Math 3202

- 1. Let trajectory be given by vector function $\vec{r}(t) = (t \cos(2t), t \sin(2t), 0)$. Find velocity vector $\vec{v}(t) = \vec{r}'$, angular momentum vector $\vec{L}(t) = \vec{r} \times \vec{v}$, acceleration vector $\vec{a}(t) = \vec{r}''$ and torque vector $\vec{\tau}(t) = \vec{r} \times \vec{a}$. Is there a moment of time where vectors \vec{r} and \vec{v} are perpendicular?
- 2. Let trajectory be given by vector function $\vec{r}(t) = (\cos(2t), \sin(2t), t)$. Find velocity vector $\vec{v}(t) = \vec{r'}$, angular momentum vector $\vec{L}(t) = \vec{r} \times \vec{v}$, acceleration vector $\vec{a}(t) = \vec{r'}$ and torque vector $\vec{\tau}(t) = \vec{r} \times \vec{a}$.
- 3. (a) Is the curve $\vec{r}(t) = (t^3, t^2, t)$ smooth?
 - (b) Is it true of false that the curve given by $\vec{r}(t) = (f(t), g(t), t)$ is smooth regardless of what the functions f(t) and g(t) are, as long as they are differentiable?
- 4. Use definition of the cross product and the product rule for differentiation to show that

$$(\vec{x} \times \vec{y})' = \vec{x}' \times \vec{y} + \vec{x} \times \vec{y}'.$$

- 5. Find the length of the curve
 - (a) $\vec{r} = (3t^2, 12t, 8t^{3/2})$ where $0 \le t \le 2$.
 - (b) $\vec{r} = (3t, 4\sin t, 4\cos t)$ where $-1 \le t \le 10$
- 6. Find the curvature and normal and binormal vectors at given point
 - (a) $\vec{r}(t) = (t, t^3, 0)$ at (1, 1, 0)
 - (b) $\vec{r}(t) = (e^t, e^t \sin t, e^t \cos t)$ at (1, 0, 1)
- 7. Find and graph the osculating circle of the hyperbola y = 2/x at point (1, 2).