1. Given parametric equations find equation in the form $F(x, y)=0$ and sketch the curve. Do you know its name?
(a) $x=\sec t, y=\tan t,-\pi / 2<t<\pi / 2$

Answer: $1-y^{2}-x^{2}=0, x>0$, the right branch of hyperbola with vertex at $(1,0)$ and asymptotes $y= \pm x$.
use $1+\tan ^{2} t=\sec ^{2} t$, and $\sec t>0$ for $-\pi / 2<t<\pi / 2$.
(b) $x=e^{t}, y=1-e^{-t},-\ln 2 \leq t \leq \ln 2$

Answer: $1-1 / x-y=0, x>0$, the right branch of hyperbola with vertex at at $(1,0)$ and asymptotes $y=1, x=0$.
(c) $x=2 \cos t, y=3 \sin t,-\pi<t<\pi$

Answer: $x^{2} / 4+y^{2} / 9-1=0$, ellipse.
(d) $x=2 \cos (2 t), y=2 \sin (2 t),-\pi / 2<t<\pi / 2$

Answer: $x^{2} / 4+y^{2} / 4-1=0$, circle of radius 2 .
2. For each curve from the previous problem find and sketch tangent vector at $t=0$.
a) Answer: $\vec{r}^{\prime}(0)=(0,1)$
b) Answer: $\vec{r}^{\prime}(0)=(1,1)$
c) Answer: $\vec{r}^{\prime}(0)=(0,3)$
d) Answer: $\vec{r}(0)=(0,4)$
P.S. Note that in each case $\vec{r}(0)$ is tangent to a corresponding curve at point $\vec{r}(0)$.
3. Sketch 3D curve and find tangent vector at each time t.
(a) $x=\cos (2 t), y=1, z=2,-\pi / 2<t<\pi / 2$

Answer: segment of straight line parallel to the x -axis and connecting poins $(-1,1,2)$ and $(1,1,2)$.
(b) $x=\cos (2 t), y=3, z=\sin (2 t),-\pi / 2<t<\pi / 2$

Answer: circle in the plain $y=3$, radius $=1$, center at $(0,3,0)$.
(c) $x=\cos (2 t), y=t, z=\sin (2 t),-\pi / 2<t<\pi / 2$

Answer: Part of helix along the y-axis.
4. Find parametric equations for the sides of the triangle with vertices at points $(1,2,3),(-1,5,6)$, $(0,5,1)$.
Answer: Side 1: $x=t-(1-t)=2 t-1, y=2 t+5(1-t)=-3 t+5, z=3 t+6(1-t)=-3 t+6$, $0 \leq t \leq 1$.
Side 2: $x=-t, y=5 t+5(1-t)=5, z=6 t+(1-t)=5 t+1,0 \leq t \leq 1$.
Side 3: $x=(1-t), y=5 t+2(1-t)=3 t+2, z=t+3(1-t)=-2 t+3,0 \leq t \leq 1$.
5. Find parametric equations for the curve of intersection of cylinder $x^{2}+y^{2}=4$ and $z=x y$. Can you imagine and sketch the curve? Please!
Answer: $x=2 \cos t, y=2 \sin t, z=2 \sin (2 t)$.
This curve is an intersection of the circular cyllinder and the seddle shaped surface.
6. Find vector position vector $\vec{r}(t)$ if the velocity vector is given by
(a) $\frac{4}{1+t^{2}} \mathbf{i}+\frac{2 t}{1+t^{2}} \mathbf{j}+\frac{t^{2}}{1+t^{2}} \mathbf{k}$

Answer: $\vec{r}=(4 \arctan t) \mathbf{i}+\ln \left(1+t^{2}\right) \mathbf{j}+(t-\arctan t) \mathbf{k}$
(b) $e^{2 t} \mathbf{i}+\ln t \mathbf{j}+\sec ^{2} t \mathbf{k}$

Answer: $\vec{r}=\left(e^{2 t} / 2\right) \mathbf{i}+(t \ln t-t) \mathbf{j}+\tan t \mathbf{k}$.

