- 1. Evaluate the surface integral
 - (a) $\int \int_{\mathbf{S}} xy \, dS$, where **S** is the triangular region with vertices (1,0,0,), (0,2,0), and (0,0,2).
 - (b) $\int \int_{\mathbf{S}} x^2 z^2 dS$, where **S** is a part of the cone $z^2 = x^2 + y^2$ that lies between the planes z = 1 and z = 3.
 - (c) $\int \int_{\mathbf{S}} (x^2y + z^2) dS$, where **S** is a part of the cylinder $x^2 + y^2 = 9$ between the planes z = 0 and z = 2.
 - (d) $\int \int_{\mathbf{S}} (x^2 + y^2 + z^2) dS$, where **S** is a part of the cylinder $x^2 + y^2 = 9$ between the planes z = 0 and z = 2 together with its top and bottom disks.
- 2. Evaluate the surface integral $\int \int_{\mathbf{S}} \vec{F} \cdot d\vec{S}$ for the given vector field \vec{F} and the oriented surface \mathbf{S} .
 - (a) $\vec{F}(x, y, z) = (xy, yz, zx)$, **S** is the part of the paraboloid $z = 4 x^2 y^2$ that lies above the square $0 \le x \le 1$, $0 \le y \le 1$, and has upward orientation.
 - (b) $\vec{F}(x, y, z) = (xy, 4x^2, yz)$, **S** is a surface $z = xe^y$ that lies above the square $0 \le x \le 1$, $0 \le y \le 1$, and has upward orientation.
 - (c) $\vec{F}(x, y, z) = (xze^y, -xze^y, z)$, **S** is the part of the plane x + y + z = 1 in the first octant and downward orientation.
 - (d) $\vec{F}(x, y, z) = (x, y, z^4)$, **S** is the part of the cone $z = \sqrt{x^2 + y^2}$ beneath the plane z = 1 with downward orientation.
 - (e) $\vec{F}(x, y, z) = (x, -z, y)$, **S** is the part of the sphere $x^2 + y^2 + z^2 = 4$ in the first octant, with orientation toward the origin.
- 3. A fluid with density 1200 flows with velocity $\vec{v} = (y, 1, z)$. Find the rate of flow upward through the paraboloid $z = 9 (x^2 + y^2)/4$, $x^2 + y^2 \le 36$.
- 4. Use Stokes' Th to evaluate $\int_C \vec{F} \cdot d\vec{r}$. Curve C is oriented counterclockwise as viewed from above.
 - (a) $\vec{F}(x, y, z) = (x + y^2, y + z^2, z + x^2)$, C is the triangle with vertices (1,0,0), (0,1,0), and (0,0,1).
 - (b) $\vec{F}(x, y, z) = (e^{-x}, e^x, e^z)$, C is the boundary of the plane 2x + y + 2z = 2 in the first octant.
 - (c) $\vec{F}(x, y, z) = (yz, 2xz, e^{xy}), C$ is the circle $x^2 + y^2 = 16, z = 5.$
- 5. (bonus) If **S** is a sphere and \vec{F} satisfies the hypotheses of the Stokes' Th, show that $\int \int_{\mathbf{S}} \vec{F} \cdot d\vec{S} = 0$