1. Evaluate the surface integral
(a) $\iint_{\mathbf{S}} x y d S$, where \mathbf{S} is the triangular region with vertices $(1,0,0),,(0,2,0)$, and $(0,0,2)$.
(b) $\iint_{\mathbf{S}} x^{2} z^{2} d S$, where \mathbf{S} is a part of the cone $z^{2}=x^{2}+y^{2}$ that lies between the planes $z=1$ and $z=3$.
(c) $\iint_{\mathbf{S}}\left(x^{2} y+z^{2}\right) d S$, where \mathbf{S} is a part of the cylinder $x^{2}+y^{2}=9$ between the planes $z=0$ and $z=2$.
(d) $\iint_{\mathbf{S}}\left(x^{2}+y^{2}+z^{2}\right) d S$, where \mathbf{S} is a part of the cylinder $x^{2}+y^{2}=9$ between the planes $z=0$ and $z=2$ together with its top and bottom disks.
2. Evaluate the surface integral $\iint_{\mathbf{S}} \vec{F} \cdot d \vec{S}$ for the given vector field \vec{F} and the oriented surface \mathbf{S}.
(a) $\vec{F}(x, y, z)=(x y, y z, z x), \mathbf{S}$ is the part of the paraboloid $z=4-x^{2}-y^{2}$ that lies above the square $0 \leq x \leq 1,0 \leq y \leq 1$, and has upward orientation.
(b) $\vec{F}(x, y, z)=\left(x y, 4 x^{2}, y z\right), \mathbf{S}$ is a surface $z=x e^{y}$ that lies above the square $0 \leq x \leq 1$, $0 \leq y \leq 1$, and has upward orientation.
(c) $\vec{F}(x, y, z)=\left(x z e^{y},-x z e^{y}, z\right), \mathbf{S}$ is the part of the plane $x+y+z=1$ in the first octant and downward orientation.
(d) $\vec{F}(x, y, z)=\left(x, y, z^{4}\right), \mathrm{S}$ is the part of the cone $z=\sqrt{x^{2}+y^{2}}$ beneath the plane $z=1$ with downward orientation.
(e) $\vec{F}(x, y, z)=(x,-z, y), \mathbf{S}$ is the part of the sphere $x^{2}+y^{2}+z^{2}=4$ in the first octant, with orientation toward the origin.
3. A fluid with density 1200 flows with velocity $\vec{v}=(y, 1, z)$. Find the rate of flow upward through the paraboloid $z=9-\left(x^{2}+y^{2}\right) / 4, x^{2}+y^{2} \leq 36$.
4. Use Stokes' Th to evaluate $\int_{C} \vec{F} \cdot d \vec{r}$. Curve C is oriented counterclockwise as viewed from above.
(a) $\vec{F}(x, y, z)=\left(x+y^{2}, y+z^{2}, z+x^{2}\right), C$ is the triangle with vertices $(1,0,0),(0,1,0)$, and $(0,0,1)$.
(b) $\vec{F}(x, y, z)=\left(e^{-x}, e^{x}, e^{z}\right), C$ is the boundary of the plane $2 x+y+2 z=2$ in the first octant.
(c) $\vec{F}(x, y, z)=\left(y z, 2 x z, e^{x y}\right), C$ is the circle $x^{2}+y^{2}=16, z=5$.
5. (bonus) If \mathbf{S} is a sphere and \vec{F} satisfies the hypotheses of the Stokes' Th, show that $\iint_{\mathbf{S}} \vec{F} \cdot d \vec{S}=0$
