1. Evaluate the line integral of the vector field
(a) $\int_{C} x y d x+(x-y) d y$, where C consists of line segments from $(0,0)$ to $(2,0)$ and from $(2,0)$ to (3,2);
(b) $\int_{C} \sin x d x+\cos y d y$, where C consists of the top half of the circle $x^{2}+y^{2}=1$ from $(1,0)$ to $(-1,0)$ and line segments from $(-1,0)$ to $(-2,3)$.
2. Evaluate $\int_{C} \vec{F} \cdot d \vec{r}$, where
(a) $\vec{F}=\left(x^{2} y^{3} ;-y \sqrt{x}\right)$, and $\vec{r}=\left(t^{3} ;-t^{3}\right), 0 \leq t \leq 1$;
(b) $\vec{F}=\left(x\left(x^{2}+y^{2}\right)^{-1 / 2} ; y\left(x^{2}+y^{2}\right)^{-1 / 2}\right)$, and $\vec{r}=\left(t, 1+t^{2}\right),-1 \leq t \leq 1$.
3. Determine whether or not \vec{F} is concervative vector field, and if yes, find the potential.
(a) $\vec{F}=\left(2 x \cos y-y \cos x ;-x^{2} \sin y-\sin x\right)$;
(b) $\vec{F}=\left(1+2 x y+\ln x ; x^{2}\right)$.
4. Show that the line integral is path-independent and evaluate the integral along any path from $(1,0)$ to $(2, \pi / 4)$
(a) $\int e^{y} d x+x e^{y} d y$;
(b) $\int \tan y d x+x \sec ^{2} y d y$.
5. Find the work done by force field $\vec{F}=\left((y / x)^{2} ;-2(y / x)\right)$ moving an object from $(1,1)$ to $(4,-2)$.
6. Consider vector field $\vec{F}=\left(-y\left(x^{2}+y^{2}\right)^{-1} ; x\left(x^{2}+y^{2}\right)^{-1}\right)$.
a) Is \vec{F} conservative?
b) Calculate line integrals $\int_{C} \vec{F} \cdot d \vec{r}$ along lower and upper halfs of the circle $x^{2}+y^{2}=1$ from $(1,0)$ to ($-1,0$). Is the line integral path-independent?
c) Is there a contradiction? Explain.
7. Determine whether or not the given set is open, connected, simply-connected?
a) $\{(x, y) \mid x<0, y>0\}$;
b) $\{(x, y)||x|>0\}$;
c) $\left\{(x, y) \mid x^{2}+y^{2} \leq 5\right\}$;
d) $\left\{(x, y) \mid x^{2}+y^{2}>5\right\}$.
