1. Find the mass and the center of mass of lamina that occupies region D and has density $\rho(x, y)$.

Solution we use the formulas

$$
m=\iint_{D} \rho(x, y) d A, \quad \bar{x}=\frac{1}{m} \iint_{D} x \rho(x, y) d A, \quad \bar{y}=\frac{1}{m} \iint_{D} y \rho(x, y) d A
$$

(a) $D=\{(x, y) \mid 0 \leq x \leq a, 0 \leq y \leq b\}, \rho(x, y)=c x y$. Here a, b, c are positive constants.

Answer
$m=\int_{0}^{a} \int_{0}^{b} c x y d y d x=a^{2} b^{2} c / 4 ;$
$\bar{x}=\frac{1}{m} \int_{0}^{a} \int_{0}^{b} c x^{2} y d y d x=2 a / 3 ;$
$\bar{y}=\frac{1}{m} \int_{0}^{a} \int_{0}^{b} c x y^{2} d y d x=2 b / 3 ;$
(b) $[\mathbf{6 p t}] D$ is the triangular region with vertices $(0,0),(1,1),(4,0) ; \rho(x, y)=x$.

Answer
triangular region: $0 \leq y \leq 1, y \leq x \leq 4-3 y$;
$m=\int_{0}^{1} \int_{y}^{4-3 y} x d x d y=10 / 3$;
$\bar{x}=0.3 \int_{0}^{1} \int_{y}^{4-3 y} x^{2} d x d y=2.1 ;$
$\bar{y}=0.3 \int_{0}^{1} \int_{y}^{4-3 y} x y d x d y=0.3$;
(c) $[\mathbf{6} \mathbf{p t}] D$ is bounded by $y=\sqrt{x}, y=0, x=1 ; \rho(x, y)=x$.

Answer
region: $0 \leq y \leq 1, y^{2} \leq x \leq 1$;
$m=\int_{0}^{1} \int_{y^{2}}^{1} x^{2} d x d y=2 / 5$
$\bar{x}=5 / 2 \int_{0}^{1} \int_{y^{2}}^{1} x^{2} d x d y=5 / 7$
$\bar{x}=5 / 2 \int_{0}^{1} \int_{y^{2}}^{1} x y d x d y=5 / 12$
(d) D is the part of the disk $x^{2}+y^{2} \leq 1$ in the first quadrant. Density at point (x, y) is proportional to the square of the distance to the origine, $\rho(x, y)=c\left(x^{2}+y^{2}\right)$, where c is a positive constant.
Answer
change to polar coordinates $x=r \cos \theta, y=r \sin \theta$.
region in polar coordinates: $0 \leq \theta \leq \pi / 2,0 \leq r \leq 1$;
$m=\int_{0}^{\pi / 2} \int_{0}^{1} c r^{2} r d r d \theta=c \pi / 8 ;$
$\bar{x}=\int_{0}^{\pi / 2} \int_{0}^{1} c r^{2} r \cos \theta r d r d \theta=8 /(5 \pi) ;$
$\bar{y}=\int_{0}^{\pi / 2} \int_{0}^{1} c r^{2} r \sin \theta r d r d \theta=8 /(5 \pi) ;$
2. Find the area of the surface:

Solution: Let $z=f(x, y),(x, y) \in D$.

$$
A=\iint_{D} \sqrt{1+f_{x}^{2}+f_{y}^{2}} d A
$$

(a) the part of the plane $2 x+5 y+z=10$, that lies inside the cylinder $x^{2}+y^{2}=9$.

Answer: Here D is a circle of radius 3 with center at the origin; $z=10-2 x-5 y$. Thus $A=\int_{0}^{2 \pi} \int_{0}^{3} \sqrt{1+4+25} r d r d \theta=9 \sqrt{30} \pi$.
(b) $[\mathbf{6} \mathbf{p t}]$ the part of the paraboloid $z=4-x^{2}-y^{2}$ that lies above the $x y$-plane.

Answer: $x y$-plane has equation $z=0$. Thus here D is a circle of radius 2 with center at the origin. Consequently, $A=\int_{0}^{2 \pi} \int_{0}^{2} \sqrt{1+4 r^{2}} r d r d \theta=\left(17^{3 / 2}-1\right) \pi / 6$.
(c) the part of the hyperbolic paraboloid $z=y^{2}-x^{2}$ that lies between the cylinders $x^{2}+y^{2}=1$ and $x^{2}+y^{2}=4$.
Answer: Here D lies between circles of radii 1 and 2 with centers at the origin: $0 \leq \theta \leq 2 \pi$, $1 \leq r \leq 2$;
$A=\int_{0}^{2 \pi} \int_{1}^{2} \sqrt{1+4 r^{2}} r d r d \theta=\left(17^{3 / 2}-5^{3 / 2}\right) \pi / 6$.
(d) $[\mathbf{6} \mathbf{p t}]$ the part of the sphere $x^{2}+y^{2}+z^{2}=4 z$ that lies inside the paraboloid $z=x^{2}+y^{2}$.

Answer: Rewrite equation of the sphere: $x^{2}+y^{2}+(z-2)^{2}=4$. The intersection curve is a circle: $z=3 ; x^{2}+y^{2}=3$. Thus domain D is $0 \leq \theta \leq 2 \pi, 0 \leq r \leq 3$;
and the surface of sphere inside the paraboloid has equation

$$
z=2+\sqrt{4-x^{2}-y^{2}} .
$$

Thus

$$
A=\int_{0}^{2 \pi} \int_{0}^{2} \sqrt{1+r^{2} /\left(4-r^{2}\right)} r d r d \theta=4 \pi
$$

3. Evaluate
a) $\int_{0}^{1} \int_{x}^{2 x} \int_{0}^{y} 2 x y z d z d y d x=5 / 8$.
b) $[\mathbf{3 p t}] \int_{0}^{1} \int_{0}^{z} \int_{0}^{y} z e^{-y^{2}} d x d y d z=(4 e)^{-1}$.
