Math 3202

Solutions

1. Find the mass and the center of mass of lamina that occupies region D and has density $\rho(x, y)$. Solution we use the formulas

$$m = \int \int_D \rho(x, y) \, dA, \quad \bar{x} = \frac{1}{m} \int \int_D x \rho(x, y) \, dA, \quad \bar{y} = \frac{1}{m} \int \int_D y \rho(x, y) \, dA,$$

(a) $D = \{(x, y) | 0 \le x \le a, 0 \le y \le b\}, \rho(x, y) = cxy$. Here a, b, c are positive constants. Answer

 $m = \int_{0}^{a} \int_{0}^{b} cxy dy dx = a^{2}b^{2}c/4;$ $\bar{x} = \frac{1}{m} \int_{0}^{a} \int_{0}^{b} cx^{2}y dy dx = 2a/3;$ $\bar{y} = \frac{1}{m} \int_{0}^{a} \int_{0}^{b} cxy^{2} dy dx = 2b/3;$

(b) [6pt] D is the triangular region with vertices (0,0), (1,1), (4,0); $\rho(x,y) = x$. Answer

triangular region: $0 \le y \le 1, y \le x \le 4 - 3y;$ $m = \int_0^1 \int_y^{4-3y} x dx dy = 10/3;$ $\bar{x} = 0.3 \int_0^1 \int_y^{4-3y} x^2 dx dy = 2.1;$ $\bar{y} = 0.3 \int_0^1 \int_y^{4-3y} xy dx dy = 0.3;$

- (c) [6pt] *D* is bounded by $y = \sqrt{x}$, y = 0, x = 1; $\rho(x, y) = x$. Answer region: $0 \le y \le 1$, $y^2 \le x \le 1$; $m = \int_0^1 \int_{y^2}^1 x^2 dx dy = 2/5$ $\bar{x} = 5/2 \int_0^1 \int_{y^2}^1 x^2 dx dy = 5/7$ $\bar{x} = 5/2 \int_0^1 \int_{y^2}^1 xy dx dy = 5/12$
- (d) D is the part of the disk $x^2 + y^2 \le 1$ in the first quadrant. Density at point (x, y) is proportional to the square of the distance to the origine, $\rho(x, y) = c(x^2 + y^2)$, where c is a positive constant. Answer

change to polar coordinates $x = r \cos \theta$, $y = r \sin \theta$. region in polar coordinates: $0 \le \theta \le \pi/2$, $0 \le r \le 1$; $m = \int_0^{\pi/2} \int_0^1 cr^2 r dr d\theta = c\pi/8$; $\bar{x} = \int_0^{\pi/2} \int_0^1 cr^2 r \cos \theta r dr d\theta = 8/(5\pi)$; $\bar{y} = \int_0^{\pi/2} \int_0^1 cr^2 r \sin \theta r dr d\theta = 8/(5\pi)$;

2. Find the area of the surface:

Solution: Let $z = f(x, y), (x, y) \in D$.

$$A = \int \int_D \sqrt{1 + f_x^2 + f_y^2} \, dA.$$

(a) the part of the plane 2x + 5y + z = 10, that lies inside the cylinder $x^2 + y^2 = 9$. Answer: Here D is a circle of radius 3 with center at the origin; z = 10 - 2x - 5y. Thus $A = \int_0^{2\pi} \int_0^3 \sqrt{1 + 4 + 25} r dr d\theta = 9\sqrt{30}\pi$.

- (b) [6pt] the part of the paraboloid $z = 4 x^2 y^2$ that lies above the *xy*-plane. Answer: *xy*-plane has equation z = 0. Thus here *D* is a circle of radius 2 with center at the origin. Consequently, $A = \int_0^{2\pi} \int_0^2 \sqrt{1 + 4r^2} r dr d\theta = (17^{3/2} - 1)\pi/6$.
- (c) the part of the hyperbolic paraboloid $z = y^2 x^2$ that lies between the cylinders $x^2 + y^2 = 1$ and $x^2 + y^2 = 4$. Answer: Here D lies between circles of radii 1 and 2 with centers at the origin: $0 \le \theta \le 2\pi$, $1 \le r \le 2$; $A = \int_0^{2\pi} \int_1^2 \sqrt{1 + 4r^2} r dr d\theta = (17^{3/2} - 5^{3/2})\pi/6$.
- (d) [6pt] the part of the sphere $x^2 + y^2 + z^2 = 4z$ that lies inside the paraboloid $z = x^2 + y^2$. Answer: Rewrite equation of the sphere: $x^2 + y^2 + (z - 2)^2 = 4$. The intersection curve is a circle: z = 3; $x^2 + y^2 = 3$. Thus domain D is $0 \le \theta \le 2\pi$, $0 \le r \le 3$; and the surface of sphere inside the paraboloid has equation

$$z = 2 + \sqrt{4 - x^2 - y^2}.$$

Thus

$$A = \int_0^{2\pi} \int_0^2 \sqrt{1 + r^2/(4 - r^2)} r dr d\theta = 4\pi$$

3. Evaluate

- a) $\int_0^1 \int_x^{2x} \int_0^y 2xyz \, dz \, dy \, dx = 5/8.$
- b) **[3pt]** $\int_0^1 \int_0^z \int_0^y z e^{-y^2} dx dy dz = (4e)^{-1}.$