- 1. Find the mass and the center of mass of lamina that occupies region D and has density $\rho(x, y)$.
 - (a) $D = \{(x, y) | 0 \le x \le a, 0 \le y \le b\}, \rho(x, y) = cxy$. Here a, b, c are positive constants.
 - (b) D is the triangular region with vertices (0,0), (1,1), (4,0); $\rho(x,y) = x$.
 - (c) D is bounded by $y = \sqrt{x}$, y = 0, x = 1; $\rho(x, y) = x$.
 - (d) D is the part of the disk $x^2 + y^2 \le 1$ in the first quadrant. Density at point (x, y) is proportional to the square of the distance to the origine, $\rho(x, y) = c(x^2 + y^2)$, where c is a positive constant.
- 2. Find the area of the surface:
 - (a) the part of the plane 2x + 5y + z = 10, that lies inside the cylinder $x^2 + y^2 = 9$.
 - (b) the part of the paraboloid $z = 4 x^2 y^2$ that lies above the xy-plane.
 - (c) the part of the hyperbolic paraboloid $z = y^2 x^2$ that lies between the cylinders $x^2 + y^2 = 1$ and $x^2 + y^2 = 4$.
 - (d) the part of the sphere $x^2 + y^2 + z^2 = 4z$ that lies inside the paraboloid $z = x^2 + y^2$.
- 3. Evaluate
 - a) $\int_0^1 \int_x^{2x} \int_0^y 2xyz \, dz \, dy \, dx$.
 - b) $\int_0^1 \int_0^z \int_0^y z e^{-y^2} dx dy dz$.