1. Find the mass and the center of mass of lamina that occupies region D and has density $\rho(x, y)$.
(a) $D=\{(x, y) \mid 0 \leq x \leq a, 0 \leq y \leq b\}, \rho(x, y)=c x y$. Here a, b, c are positive constants.
(b) D is the triangular region with vertices $(0,0),(1,1),(4,0) ; \rho(x, y)=x$.
(c) D is bounded by $y=\sqrt{x}, y=0, x=1 ; \rho(x, y)=x$.
(d) D is the part of the disk $x^{2}+y^{2} \leq 1$ in the first quadrant. Density at point (x, y) is proportional to the square of the distance to the origine, $\rho(x, y)=c\left(x^{2}+y^{2}\right)$, where c is a positive constant.
2. Find the area of the surface:
(a) the part of the plane $2 x+5 y+z=10$, that lies inside the cylinder $x^{2}+y^{2}=9$.
(b) the part of the paraboloid $z=4-x^{2}-y^{2}$ that lies above the $x y$-plane.
(c) the part of the hyperbolic paraboloid $z=y^{2}-x^{2}$ that lies between the cylinders $x^{2}+y^{2}=1$ and $x^{2}+y^{2}=4$.
(d) the part of the sphere $x^{2}+y^{2}+z^{2}=4 z$ that lies inside the paraboloid $z=x^{2}+y^{2}$.
3. Evaluate
a) $\int_{0}^{1} \int_{x}^{2 x} \int_{0}^{y} 2 x y z d z d y d x$.
b) $\int_{0}^{1} \int_{0}^{z} \int_{0}^{y} z e^{-y^{2}} d x d y d z$.
