Answers

1. The position function of the spaceship is

$$\vec{r}(t) = (\cos t, \sin t, \tan t)$$

and the coordinates of the space station are $\vec{R} = (-\sqrt{2}, 2\sqrt{2}, 7)$.

a) At what moment of time t should the captain turn off the engines in order to coast into the station?

Solution. Set up equations $\vec{r}(t_0) + k\vec{v}(t_0) = \vec{R}$. Solve to get $t_0 = \pi/4, k = 3$.

The captain should turn off the engines at time $t = \pi/4$.

b) What is the angular momentum \vec{L} of the spaceship at the moment of time when the engine was turned off. (Recall $\vec{L} = \vec{r} \times \vec{v}$, assuming that mass is 1.)

Answer. $(\sqrt{2}/2, -3\sqrt{2}/2, 1)$.

c) Find the speed and the distance traveled by the spaceship with the engine turned off. *Solution.*

The speed is $|\vec{v}(\pi/4)| = \sqrt{5}$ miles/min.

The distance betweet points $\vec{r}(\pi/4)$ and \vec{R} is $3\sqrt{5}$ miles.

d) How long it takes the spaceship to reach the station after turning off the engine?Answer. 3 minutes.

(you may assume that time is measured in minutes and distance in miles.)

- 2. Evaluate the line integral along given curve
 - (a) $\int ye^x ds$, along the line segment jointing (1,2) to (4,7). Answer. $= \int_0^1 (2+5t)e^{1+3t}\sqrt{34}dt = \sqrt{34}e(16e^3-1)/9.$
 - (b) $\int (2x+9z) ds$, along the arc x = t, $y = t^2$, $z = t^3$, $0 \le t \le 1$. Answer. $= \int_0^1 (2t+9t^3)\sqrt{1+4t^2+9t^4} dt = (14^{3/2}-1)/6.$
 - (c) $\int x^2 z \, ds$, along the line segment jointing (0, 6, -1) to (4, 1, 5). Answer. $= \int_0^1 (4t)^2 (6t - 1)\sqrt{77} dt = 56\sqrt{77}/3.$
- Find the mass and the center of mass of a thin wire in the shape of

 a) quarter-circle x² + y² = 4, x ≥ 0, y ≥ 0, if the density function is ρ(x, y) = x + y.

 Answer.

$$m = \int_0^{\pi/2} (2\cos t + 2\sin t) 2dt = 8.$$
$$\bar{x} = \frac{1}{m} \int_0^{\pi/2} 2\cos t (2\cos t + 2\sin t) 2dt = \frac{\pi + 2}{4}.$$

$$\bar{y} = \frac{1}{m} \int_0^{\pi/2} 2\sin t (2\cos t + 2\sin t) 2dt = \frac{\pi + 2}{4}$$

•

b) helix x = t, $y = \cos t$, $z = \sin t$, $0 \le t \le 2\pi$ if the density at any point is equal to the square of the distance from the origin.

Answer.

$$m = \int_0^{2\pi} (t^2 + 1)\sqrt{2}dt = 2\sqrt{2}\pi \frac{3 + 4\pi^2}{3}.$$

$$\bar{x} = \frac{1}{m} \int_0^{2\pi} t(t^2 + 1)\sqrt{2}dt = \frac{3\pi(2\pi^2 + 1)}{3 + 4\pi^2}.$$

$$\bar{y} = \frac{1}{m} \int_0^{2\pi} \cos t(t^2 + 1)\sqrt{2}dt = \frac{6}{3 + 4\pi^2}.$$

$$\bar{z} = \frac{1}{m} \int_0^{2\pi} \sin t(t^2 + 1)\sqrt{2}dt = -\frac{6\pi}{3 + 4\pi^2}.$$

- 4. Answer questions 1 3 for each of the following functions (a) –(f).
 - 1. Sketch level curves f(x, y) = k, k = 0, 1, 2 (if such a curve exists).
 - 2. Name and sketch the surface given by z = f(x, y).
 - 3. Find partial derivatives f_x and f_y .

(a)
$$f(x, y) = \sqrt{25 - 4x^2 - y^2}$$
,
Answer.
1. Level curves are ellipses with equations $4x^2 + y^2 = 25 - k^2$, k=0,1,2.
2. $z \ge 0, 4x^2 + y^2 + z^2 = 25$ upper half of ellipsoid.
3. $f_x = -4x(25 - 4x^2 - y^2)^{-1/2}, f_y = -y(25 - 4x^2 - y^2)^{-1/2}$.
(b) $f(x, y) = \sqrt{x^2 + \frac{y^2}{9}} - 1$,
1. Level curves are ellipses with equations $x^2 + y^2/9 = 1 + k^2$, k=0,1,2.
2. $z \ge 0, x^2 + y^2/9 - z^2 = 1$ upper half of hyperboloid of one sheet.
3. $f_x = x(x^2 + y^2/9 - 1)^{-1/2}, f_y = (y/9)(x^2 + y^2/9 - 1)^{-1/2}$.
(c) $f(x, y) = \sqrt{2 + x^2 + \frac{y^2}{4}}$,
1. k=0,1 no level curves; k=2 ellipse $x^2/2 + y^2/8 = 1$.
2. $z \ge 0, -x^2 - y^2/4 + z^2 = 2$ upper half of hyperboloid of two sheet.
3. $f_x = x(2 + x^2 + y^2/4)^{-1/2}, f_y = (y/4)(2 + x^2 + y^2/4)^{-1/2}$.
(d) $f(x, y) = x^2 - \frac{y^2}{4}$,
1. k=0 lines $y = \pm 2x$; k=1,2 hyperbolas
2. $z = x^2 - y^2/4$ hyperbolic paraboloid.
3 $f_x = 2x, f_y = -y/2$.

(e) $f(x,y) = 5 - x^2 - \frac{y^2}{4}$,

1. Level curves are ellipses with equations $x^2 + y^2/4 = 5 - k$, k=0,1,2. 2. $z = 5 - x^2 - y^2/4$ elliptic paraboloid. (up side down, lifted up by 5 units.) 3 $f_x = -2x$, $f_y = -y/2$.

(f)
$$f(x,y) = \sqrt{y^2 + \frac{x^2}{4}},$$

1. Level curves are ellipses with equations $x^2/4 + y^2 = k^2$, k=1,2; for k=0 just a point at the origin.

2. $z \ge 0$ $z^2 = x^2/4 + y^2$ upper part of cone. 3 $f_x = (x/4)(y^2 + \frac{x^2}{4})^{-1/2}, f_y = y(y^2 + \frac{x^2}{4})^{-1/2}.$