1. The position function of the spaceship is

$$
\vec{r}(t)=(\cos t, \sin t, \tan t)
$$

and the coordinates of the space station are $\vec{R}=(-\sqrt{2}, 2 \sqrt{2}, 7)$.
a) At what moment of time t should the captain turn off the engines in order to coast into the station?
Solution. Set up equations $\vec{r}\left(t_{0}\right)+k \vec{v}\left(t_{0}\right)=\vec{R}$. Solve to get $t_{0}=\pi / 4, k=3$.
The captain should turn off the engines at time $t=\pi / 4$.
b) What is the angular momentum \vec{L} of the spaceship at the moment of time when the engine was turned off. (Recall $\vec{L}=\vec{r} \times \vec{v}$, assuming that mass is 1.)
Answer. $(\sqrt{2} / 2,-3 \sqrt{2} / 2,1)$.
c) Find the speed and the distance traveled by the spaceship with the engine turned off.

Solution.

The speed is $|\vec{v}(\pi / 4)|=\sqrt{5}$ miles $/ \mathrm{min}$.
The distance betweet points $\vec{r}(\pi / 4)$ and \vec{R} is $3 \sqrt{5}$ miles.
d) How long it takes the spaceship to reach the station after turning off the engine?

Answer. 3 minutes.
(you may assume that time is measured in minutes and distance in miles.)
2. Evaluate the line integral along given curve
(a) $\int y e^{x} d s$, along the line segment jointing $(1,2)$ to $(4,7)$.

Answer.
$=\int_{0}^{1}(2+5 t) e^{1+3 t} \sqrt{34} d t=\sqrt{34} e\left(16 e^{3}-1\right) / 9$.
(b) $\int(2 x+9 z) d s$, along the arc $x=t, y=t^{2}, z=t^{3}, 0 \leq t \leq 1$.

Answer.
$=\int_{0}^{1}\left(2 t+9 t^{3}\right) \sqrt{1+4 t^{2}+9 t^{4}} d t=\left(14^{3 / 2}-1\right) / 6$.
(c) $\int x^{2} z d s$, along the line segment jointing $(0,6,-1)$ to $(4,1,5)$.

Answer.
$=\int_{0}^{1}(4 t)^{2}(6 t-1) \sqrt{77} d t=56 \sqrt{77} / 3$.
3. Find the mass and the center of mass of a thin wire in the shape of
a) quarter-circle $x^{2}+y^{2}=4, x \geq 0, y \geq 0$, if the density function is $\rho(x, y)=x+y$. Answer.

$$
\begin{gathered}
m=\int_{0}^{\pi / 2}(2 \cos t+2 \sin t) 2 d t=8 \\
\bar{x}=\frac{1}{m} \int_{0}^{\pi / 2} 2 \cos t(2 \cos t+2 \sin t) 2 d t=\frac{\pi+2}{4}
\end{gathered}
$$

$$
\bar{y}=\frac{1}{m} \int_{0}^{\pi / 2} 2 \sin t(2 \cos t+2 \sin t) 2 d t=\frac{\pi+2}{4}
$$

b) helix $x=t, y=\cos t, z=\sin t, 0 \leq t \leq 2 \pi$ if the density at any point is equal to the square of the distance from the origin.

Answer.

$$
\begin{gathered}
m=\int_{0}^{2 \pi}\left(t^{2}+1\right) \sqrt{2} d t=2 \sqrt{2} \pi \frac{3+4 \pi^{2}}{3} \\
\bar{x}=\frac{1}{m} \int_{0}^{2 \pi} t\left(t^{2}+1\right) \sqrt{2} d t=\frac{3 \pi\left(2 \pi^{2}+1\right)}{3+4 \pi^{2}} . \\
\bar{y}=\frac{1}{m} \int_{0}^{2 \pi} \cos t\left(t^{2}+1\right) \sqrt{2} d t=\frac{6}{3+4 \pi^{2}} \\
\bar{z}=\frac{1}{m} \int_{0}^{2 \pi} \sin t\left(t^{2}+1\right) \sqrt{2} d t=-\frac{6 \pi}{3+4 \pi^{2}} .
\end{gathered}
$$

4. Answer questions $1-3$ for each of the following functions (a) -(f).
5. Sketch level curves $f(x, y)=k, k=0,1,2$ (if such a curve exists).
6. Name and sketch the surface given by $z=f(x, y)$.
7. Find partial derivatives f_{x} and f_{y}.
(a) $f(x, y)=\sqrt{25-4 x^{2}-y^{2}}$, Answer.
8. Level curves are ellipses with equations $4 x^{2}+y^{2}=25-k^{2}, \mathrm{k}=0,1,2$.
9. $z \geq 0,4 x^{2}+y^{2}+z^{2}=25$ upper half of ellipsoid.
10. $f_{x}=-4 x\left(25-4 x^{2}-y^{2}\right)^{-1 / 2}, f_{y}=-y\left(25-4 x^{2}-y^{2}\right)^{-1 / 2}$.
(b) $f(x, y)=\sqrt{x^{2}+\frac{y^{2}}{9}-1}$,
11. Level curves are ellipses with equations $x^{2}+y^{2} / 9=1+k^{2}, \mathrm{k}=0,1,2$.
12. $z \geq 0, x^{2}+y^{2} / 9-z^{2}=1$ upper half of hyperboloid of one sheet.
13. $f_{x}=x\left(x^{2}+y^{2} / 9-1\right)^{-1 / 2}, f_{y}=(y / 9)\left(x^{2}+y^{2} / 9-1\right)^{-1 / 2}$.
(c) $f(x, y)=\sqrt{2+x^{2}+\frac{y^{2}}{4}}$,
14. $\mathrm{k}=0,1$ no level curves; $\mathrm{k}=2$ ellipse $x^{2} / 2+y^{2} / 8=1$.
15. $z \geq 0,-x^{2}-y^{2} / 4+z^{2}=2$ upper half of hyperboloid of two sheet.
16. $f_{x}=x\left(2+x^{2}+y^{2} / 4\right)^{-1 / 2}, f_{y}=(y / 4)\left(2+x^{2}+y^{2} / 4\right)^{-1 / 2}$.
(d) $f(x, y)=x^{2}-\frac{y^{2}}{4}$,
17. $\mathrm{k}=0$ lines $y= \pm 2 x ; \mathrm{k}=1,2$ hyperbolas
18. $z=x^{2}-y^{2} / 4$ hyperbolic paraboloid.
$3 f_{x}=2 x, f_{y}=-y / 2$.
(e) $f(x, y)=5-x^{2}-\frac{y^{2}}{4}$,
19. Level curves are ellipses with equations $x^{2}+y^{2} / 4=5-k, \mathrm{k}=0,1,2$.
20. $z=5-x^{2}-y^{2} / 4$ elliptic paraboloid. (up side down, lifted up by 5 units.)
$3 f_{x}=-2 x, f_{y}=-y / 2$.
(f) $f(x, y)=\sqrt{y^{2}+\frac{x^{2}}{4}}$,
21. Level curves are ellipses with equations $x^{2} / 4+y^{2}=k^{2}, \mathrm{k}=1,2$; for $\mathrm{k}=0$ just a point at the origin.
22. $z \geq 0 z^{2}=x^{2} / 4+y^{2}$ upper part of cone.
$3 f_{x}=(x / 4)\left(y^{2}+\frac{x^{2}}{4}\right)^{-1 / 2}, f_{y}=y\left(y^{2}+\frac{x^{2}}{4}\right)^{-1 / 2}$.
