1. [3pt] Show that if a particle moves with a constant speed, then the velocity and acceleration vectors are orthogonal.
Solution. $v^{2}=\vec{v} \cdot \vec{v}=v_{1}^{2}+v_{2}^{2}+v_{3}^{2}$
Given $v_{1}^{2}+v_{2}^{2}+v_{3}^{2}=$ const, differentiate both sides to get

$$
v_{1} \frac{d v_{1}}{d t}+v_{2} \frac{d v_{2}}{d t}+v_{3} \frac{d v_{3}}{d t}=0 .
$$

Recall that $\vec{a}=\frac{d \vec{v}}{d t}$. Thus, $\vec{v} \cdot \vec{a}=0$, and they are orthogonal.
2. Use definition of the cross product and the product rule for differentiation to show that

$$
(\vec{a} \times \vec{b})^{\prime}=\vec{a}^{\prime} \times \vec{b}+\vec{a} \times \vec{b}^{\prime}
$$

Solution.

Let $\vec{a}=\left(x_{1}, x_{2}, x_{3}\right)$ and $\vec{b}=\left(y_{1}, y_{2}, y_{3}\right)$. Work out the formula for each component: take the derivative of the vector product $\vec{a} \times \vec{b}$ and rearrange into the sum of two vector products. For the first component we have

$$
\left(x_{2} y_{3}-x_{3} y_{2}\right)^{\prime}=x_{2}^{\prime} y_{3}+x_{2} y_{3}^{\prime}-\left(x_{3}^{\prime} y_{2}+x_{3} y_{2}^{\prime}\right)=\left(x_{2}^{\prime} y_{3}-x_{3}^{\prime} y_{2}\right)+\left(x_{2} y_{3}^{\prime}-x_{3} y_{2}^{\prime}\right)
$$

Similarly, for the second and the third.

$$
\begin{aligned}
& \left(x_{3} y_{1}-x_{1} y_{3}\right)^{\prime}=x_{3}^{\prime} y_{1}+x_{3} y_{1}^{\prime}-\left(x_{1}^{\prime} y_{3}+x_{1} y_{3}^{\prime}\right)=\left(x_{3}^{\prime} y_{1}-x_{1}^{\prime} y_{3}\right)+\left(x_{3} y_{1}^{\prime}-x_{1} y_{3}^{\prime}\right) \\
& \left(x_{1} y_{2}-x_{2} y_{1}\right)^{\prime}=x_{1}^{\prime} y_{2}+x_{1} y_{2}^{\prime}-\left(x_{2}^{\prime} y_{1}+x_{2} y_{1}^{\prime}\right)=\left(x_{1}^{\prime} y_{2}-x_{2}^{\prime} y_{1}\right)+\left(x_{1} y_{2}^{\prime}-x_{2} y_{1}^{\prime}\right)
\end{aligned}
$$

3. Find the tangential and normal components of the acceleration vector if the position is given by a) $[3 \mathbf{p t}] \quad \vec{r}=\left(3 t-t^{3} ; 3 t^{2} ; 0\right)$

Solution.

Velocity $\vec{v}=\left(3-3 t^{2} ; 6 t ; 0\right)$;
Acceleration $\vec{a}=(-6 t ; 6 ; 0)$;
Speed $v(t)=3 t^{2}+3$, thus $a_{T}=d v / d t=6 t$.

$$
a_{N}=\frac{\left|a_{1} v_{2}-a_{2} v_{1}\right|}{v}=\frac{18 t^{2}+18}{3 t^{2}+3}=6 .
$$

b) $\vec{r}=\left(e^{t} ; \sqrt{2} t ; e^{-t}\right)$

Answer. $a_{T}=e^{t}-e^{-t} ; a_{N}=\sqrt{2}$.
4. [6pt] Find the tangential, normal, and binormal vectors for curve $\vec{r}(t)=\left(e^{t}, e^{t} \sin t, e^{t} \cos t\right)$ at point $(1,0,1)$.
Answer. Note, the point corresponds $t=0$.

$$
\begin{gathered}
\vec{T}(t)=\frac{1}{\sqrt{3}}(1, \sin t+\cos t, \cos t-\sin t) \\
\vec{T}(0)=\frac{1}{\sqrt{3}}(1,1,1) \\
\vec{N}(t)=\frac{1}{\sqrt{2}}(0,-\sin t+\cos t,-\cos t-\sin t) \\
\vec{N}(0)=\frac{1}{\sqrt{2}}(0,1,-1) \\
\vec{B}(0)=\vec{T}(0) \times \vec{N}(0)=\frac{1}{\sqrt{6}}(-2,1,1) .
\end{gathered}
$$

5. [3pt] Find equations of normal plane and osculating plane for the curve $\vec{r}=\left(t ; t^{2} ; t^{3}\right)$ at point $(1,1,1)$.
Answer.
$t=1 . v(1)=(1,2,3)$. Normal plane $x+2 y+3 z=6$.
Osculating plane $3 x-3 y+z=1$.
6. [3pt] Find osculating circle of the ellipse $9 x^{2}+4 y^{2}=36$ at points $(2,0)$ and $(0,3)$.

Answer. The parametric equation of the ellipse can be writted as $x=2 \cos t, y=3 \sin t, t \in[0,2 \pi]$. Then curvature $\kappa=6\left(4+5 \cos ^{2} t\right)^{-3 / 2}$.
Thus at point $(2,0)(t=0) \kappa=2 / 9$. Oscullating circle has radius $R=9 / 2$ and center at $(-2.5,0)$.
At point $(0,3)(t=\pi / 2) \kappa=3 / 4$. Oscullating circle has radius $R=4 / 3$ and center at $(0,5 / 3)$.
7. Derive the formula for the arc length

$$
l=\int_{0}^{T} \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}+\left(\frac{d z}{d t}\right)^{2}} d t
$$

for an arc given by $\vec{r}(t)=(x(t) ; y(t) ; z(t)), t \in[0, T]$.
Answer. $l=\int_{0}^{T} v(t) d t$, and $v(t)=\sqrt{\vec{v}(t) \cdot \vec{v}(t)}$, and $\vec{v}(t)=d \vec{r}(t) / d t$.

