1. Show that if a particle moves with a constant speed, then the velocity and acceleration vectors are orthogonal.
2. Use definition of the cross product and the product rule for differentiation to show that

$$
(\vec{a} \times \vec{b})^{\prime}=\vec{a}^{\prime} \times \vec{b}+\vec{a} \times \vec{b}^{\prime}
$$

3. Find the tangential and normal components of the acceleration vector if the position is given by
a) $\vec{r}=\left(3 t-t^{3} ; 3 t^{2} ; 0\right)$
b) $\vec{r}=\left(e^{t} ; \sqrt{2} t ; e^{-t}\right)$
4. Find the tangential, normal, and binormal vectors for curve $\vec{r}(t)=\left(e^{t}, e^{t} \sin t, e^{t} \cos t\right)$ at point $(1,0,1)$.
5. Find equations of normal plane and osculating plane for the curve $\vec{r}=\left(t ; t^{2} ; t^{3}\right)$ at point $(1,1,1)$.
6. Find osculating circle of the ellipse $9 x^{2}+4 y^{2}=36$ at points $(2,0)$ and $(0,3)$.
7. Derive the formula for the arc length

$$
l=\int_{0}^{T} \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}+\left(\frac{d z}{d t}\right)^{2}} d t
$$

for an arc given by $\vec{r}(t)=(x(t) ; y(t) ; z(t)), t \in[0, T]$.

