1. For each vector-function $\vec{r}(t)=(x(t), y(t))^{T}, t \in[a, b]$ given below (a-d)
2. sketch $x(t)$ and $y(t)$
3. sketch the curve in $x y$-plane, showing all details such as slope, asymptotes, vertices etc. Name the curve.
4. find the velocity vector $\vec{v}(t)$ and speed $v(t)$;

3a. Plot vector $\vec{v}(0)$ for each curve on the same figure as the curve.
4. find the acceleration vector $\vec{a}(t)$;
5. set up the integral representing the length of the curve;
6. find the curvature at $t=0$
(a) $x=5 \sin (2 t), y=3 \cos (2 t), 0 \leq t \leq \pi / 2$

Answer:
2. Right-half of the Ellipse $x^{2} / 25+y^{2} / 9=1$ with vertices at $(0, \pm 3)(5,0)$
3. $\vec{v}=(10 \cos (2 t),-6 \sin (2 t)), v(t)=\sqrt{64 \cos ^{2}(2 t)+36}$

3a) $\vec{v}(0)=(10,0)$.
4. $\vec{a}=(-20 \sin (2 t),-12 \cos (2 t))$.
5. $l=\int_{0}^{\pi / 2} \sqrt{64 \cos ^{2}(2 t)+36} d t$
6. $\kappa(0)=3 / 25$.
(b) $x=5 \tan (2 t), y=3 \sec (2 t), 0 \leq t \leq \pi / 8$

Answer: 2. A segment of hyperbola $-x^{2} / 25+y^{2} / 9=1$ from point (0,3) to point ($5,3 \sqrt{2}$)
3. $\vec{v}=\left(10 \sec ^{2}(2 t), 6 \sec (2 t) \tan (2 t)\right), v(t)=2 \sec (2 t) \sqrt{25 \sec ^{2}(2 t)+9 \tan ^{2}(2 t)}$

3a) $\vec{v}(0)=(10,0)$.
4. $\vec{a}=\left(40 \sec ^{2}(2 t) \tan (2 t), 12 \sec ^{3}(2 t)+12 \sec (2 t) \tan ^{2}(2 t)\right)$.
5. $l=2 \int_{0}^{\pi / 8} \sec (2 t) \sqrt{25 \sec ^{2}(2 t)+9 \tan ^{2}(2 t)} d t$
6. $\kappa(0)=3 / 25$.
(c) $x=t^{3}, y=1-t^{3}, 0 \leq t \leq 1$

Answer:
2. A segment of line $y=1-x$ from point $(0,1)$ to $(1,0)$.
3. $\vec{v}=\left(3 t^{2},-3 t^{2}\right), v(t)=3 \sqrt{2} t^{2}$

3a) $\vec{v}(0)=(0,0)$.
4. $\vec{a}=(6 t,-6 t)$.
5. $l=3 \sqrt{2} \int_{0}^{1} t^{2} d t=\sqrt{2}$
6. $\kappa(0)=0$.
(d) $x=5 t^{9}+1, y=3 t^{3}, 0 \leq t \leq 1$

Answer:
2. A segment of cubic parabola $x=(5 / 9) y^{3}+1$ from point $(1,0)$ to $(6,3)$.
3. $\vec{v}=\left(45 t^{8}, 9 t^{2}\right), v(t)=9 t^{2} \sqrt{25 t^{12}+1}$

3a) $\vec{v}(0)=(0,0)$.
4. $\vec{a}=\left(360 t^{7}, 18 t\right)$.
5. $l=3 \sqrt{2} \int_{0}^{1} t^{2} d t=\sqrt{2}$
6. $\kappa(t)=2430 t^{3} /\left(729\left(25 t^{12}+1\right)^{3 / 2}\right)$, thus $\kappa(0)=0$.
2. Find parametric equations for the sides of the trapezoid with vertices at points $A(-1,0), B(-1,1)$, $C(1,1), D(2,0)$.
Answer:

$$
\begin{aligned}
& A \rightarrow B x=-1, y=t, t \in[0,1] \\
& B \rightarrow C x=2 t-1, y=1, t \in[0,1] \\
& C \rightarrow D x=1+t, y=1-t, t \in[0,1] \\
& D \rightarrow A x=2-3 t, y=0, t \in[0,1]
\end{aligned}
$$

3. Find velocity vector $\vec{v}(t)$ if
(a) the acceleration vector is

$$
\vec{a}(t)=\frac{2 t}{1+t^{2}} \mathbf{i}+\ln t \mathbf{j}+e^{-4 t} \mathbf{k}, t>0
$$

Answer:

$$
\vec{v}(t)=\left(\ln \left(1+t^{2}\right)+c_{1} ; t \ln t-t+c_{2} ;-\frac{e^{-4 t}}{4}+c_{3}\right),
$$

where c_{1}, c_{2}, c_{3} are arbitrary constants.
(b) the position vector is

$$
\vec{r}(t)=\frac{2 t}{1+t^{2}} \mathbf{i}+\ln t \mathbf{j}+e^{-4 t} \mathbf{k}, t>0
$$

Answer:

$$
\vec{v}(t)=\left(\frac{2\left(1-t^{2}\right)}{\left(1+t^{2}\right)^{2}} ; \frac{1}{t} ;-4 e^{-4 t}\right) .
$$

