1. For each vector-function $\vec{r}(t)=(x(t), y(t))^{T}, t \in[a, b]$ given below (a-d)
2. sketch $x(t)$ and $y(t)$
3. sketch the curve in $x y$-plane, showing all details such as slope, asymptotes, vertices etc. Name the curve.
4. find the velocity vector $\vec{v}(t)$ and speed $v(t)$;

3a. Plot vector $v(0)$ for each curve on the same figure as the curve.
4. find the acceleration vector $\vec{a}(t)$;
6. set up the integral representing the length of the curve;
7. find the curvature at $t=0$
(a) $x=5 \sin (2 t), y=3 \cos (2 t), 0 \leq t \leq \pi / 2$
(b) $x=5 \tan (2 t), y=3 \sec (2 t), 0 \leq t \leq \pi / 8$
(c) $x=t^{3}, y=1-t^{3}, 0 \leq t \leq 1$
(d) $x=5 t^{9}+1, y=3 t^{3}, 0 \leq t \leq 1$
2. Find parametric equations for the sides of the trapezoid with vertices at points $(-1,0),(-1,1)$, $(1,1),(2,0)$.
3. Find velocity vector $\vec{v}(t)$ if
(a) the acceleration vector is

$$
\vec{a}(t)=\frac{2 t}{1+t^{2}} \mathbf{i}+\ln t \mathbf{j}+e^{-4 t} \mathbf{k}
$$

(b) the position vector is

$$
\vec{r}(t)=\frac{2 t}{1+t^{2}} \mathbf{i}+\ln t \mathbf{j}+e^{-4 t} \mathbf{k}
$$

