TEXT: TEACHING SECONDARY SCHOOL MATHEMATICS

Authors:

Merrilyn Goos

Colleen Vale

Gloria Stillman

TEXT OUTLINE

- × PART 1 Introduction
- * PART 2 Math Pedagogy, Curriculum, Assessment

- × PART 3 Teaching and Learning Math Content
- × PART 4 Equity and Diversity in Math Education
- × PART 5 Professional and Community Engagement

CHAPTER 2 OUTLINE

- × (1) Understanding in mathematics
- × (2) Learning theories
- × (3) Mathematical thinking

 (4) Role of the teacher in creating a culture of mathematical inquiry

× Students associated understanding with...

GETTING CORRECT ANSWER
 Feel confident or interested
 Knowing why, making sense
 Being able to apply elsewhere
 EXPLAIN TO SOMEONE ELSE
 Table 2.1 page 23

- × 2 different kinds of <u>MATHEMATICAL UNDERSTANDING</u> :
- Instrumental Understanding

 -knowing <u>WHAT</u> to do to solve a problem

Relational Understanding

 -knowing <u>WHAT</u> to do and <u>WHY</u> you're doing it

4 different kinds of MATHEMATICAL UNDERSTANDING

(1) knowing *that* (stating something); EX1: the sum of interior angles of triangle is

- (2) knowing *how* (doing something); *EX2: measure angles*
- (3) knowing why (explaining or proving something); EX1

(4) knowing to (as in recognizing the opportunity when to use a mathematical idea in working on a problem) EX3: the sum of interior angles of a n-polygon is

Pirie-Kieren theory of mathematical understanding

(1)	PRIMITIVE KNOWING (where I am): starting point
(2)	IMAGE MAKING: learners use previous knowledge
(3)	IMAGE HAVING: mental construction of problem without moving physical objects
(4)	PROPERTY NOTICING: combine aspects of several properties
(5)	FORMALIZING: learner abstracts a quality from the previous image
(6)	OBSERVING: reflecting on and coordinating theorems
(7)	STRUCTURING: develop a theory about the problem
(8)	INVENTISING: breaking away from existing understanding and creating new ideas

 School mathematics vs. Inquiry mathematics (Procedure) vs. (Understanding)

Students often make mistakes when they follow procedure without basic understanding

 * "errors are based on systematic *rules* which are usually distortions of sound procedures" (T. Perso, 1992)

X	-	Y	= :	2		
ЗX			=	12	(X=4, Y=2)	

Conclusion: students shouldn't aim to reproduce procedures without understanding why they work. It leads to flawed logic.

Phoenix Park

Amber Hill

- School mathematics culture X
- Inquiry mathematics culture
- Instrumental Understanding
- **Relational Understanding**
- Traditional teaching methods Progressive, open-ended
- Not helped by formal tests
 - Knowing what to, how to

Flexible and adaptive thinkers

Knowing when to, why to

CONSTRUCTIVISM

- Gives priority to individual construction of mathematical understanding
- Sees social interaction as a source of cognitive conflict that brings about learning through reorganization of mental structures
- Students actively construct knowledge by connecting prior information with new information gained through interactions with the world

Jean Piaget

- Vygotsky's socio-cultural perspective of learning says that individual cognition has its origins in social interaction (importance of language, culture, traditions)
- Memory and reasoning appear first between people as social processes, then within an individual as internal mental processes
- ZPD: "zone of proximal development"
- × Scaffolding
- Collaborative group work

Lev Vygotsky

SOCIO-CULTURAL PERSPECTIVES

Getting started

× Table 2.4 (page 39 of text) Teacher scaffolding questions during a problem-solving exercise

What are important ideas? Can you rephrase problem? What are you asked to find? What information is given? Seen problem like this before?

While students working	After students finished
Tell me what you are doing	Have you answered question?
Why did you think of that?	Have you considered all cases?
Why are you doing this?	Have you checked your answer?
What will you do with the result?	Can you explain your answer?

Why is that idea better than this? Another way to solve problem?

A classroom scenario:

- First attempt was to offer simple examples to students (unsuccessful)
- Second attempt was to try a practical activity where students worked out for themselves the properties of equilateral and isosceles triangles using ruler and compass
- Successful approach because students:

 -learned by doing
 -developed increased expectations
 -wanted to understand
 -explained to each other
 -asked questions
 -co-operated

(2)Brunner's stages of representation in learning

- × enactive
- × iconic
- × symbolic

Use of manipulatives, hands-on approach in teaching math prior to formalization and theoretical presentation.

(2) Van Hiele model in learning geometry

- × Visualization (shape recognition, identification)
- Analysis (attributes and properties of shape)
- Informal deduction (compare and classify shapes, simple proofs)
- Deduction (proofs of theorems from postulates)
- × Rigor (abstract, proof-oriented
- reasoning)

Two persons who reason at different levels cannot understand each other.

3 categories of student thinking

(a) recognizing

(b) building with

realizing that a known mathematical procedure applies in a new situation

using several previously known mathematical procedures to solve unfamiliar problems

(c) constructing

selecting previously known strategiesand ideas to integrate whensolving a challenging problem

Tom Dreyfus

Gaye Williams

Complexity of thinking		Examples of thinking	
× Recogr	nizing	Recognizing that a problem involving circles could involve certain formulas	7
× Buildin	g with	Searching for patterns, alternative solution	IS
× Constr	ucting	Continually checking for inconsistencies	

Example involving angles in polygons

- Students were given a page containing several polygons having 3 to 10 sides
- Objective: join pieces together to find the sum of all angles for each polygon
- This involves the 3 levels of thinking :

 <u>recognizing</u> the sum of angles for a triangle is 180
 <u>building</u> a figure out of the pieces
 <u>constructing</u> a table and a theory

pentagon

"reasoning" and "problem solving"

Table 2.3 (Representation of process aspects of mathematics in curriculum materials)

× National Profile (Australia)

NCTM Principles and Standards (USA)

Investigating, conjecturing, applying, verifying (/reasoning) Using problem solving strategies Using mathematical language Working in context

Problem solving Reasoning and proof Communication Connections Representation

National Curriculum (UK)

Problem solving Reasoning Communicating

Mathematical reasoning

- Involves making, evaluating and investigating conjectures and guesses
- Also involves explanation and justification for steps that a student takes

- × Mathematical problem solving
- Figure 2.3 (Factors contributing to successful problem solving)

(3) G. Polya "How to solve it ?"

Steps in problem solving:

- <u>understand</u> the <u>problem</u>.
- <u>make a plan</u>.
- × carry out the plan.
- × look back on your work.

Check for consistency. Is there a better/another solution?

(4) ROLE OF THE TEACHER IN CREATING A CULTURE OF MATHEMATICAL INQUIRY

- Teachers should try to "create a classroom community of inquiry".
- **KEY ELEMENTS OF THE TEACHER'S ROLE ARE:**
 - (1) modeling mathematical thinking

- (2) asking questions that "scaffold" students' thinking
- (3) structuring students' social interactions
- (4) connecting students' developing ideas to mathematical language and symbolism

(4) ROLE OF THE TEACHER IN CREATING A CULTURE OF MATHEMATICAL INQUIRY

Characteristics of a classroom community of mathematical inquiry: (Table 2.6 page 44)

Change

Dimension Questioning

Explaining mathematical thinking

Source of mathematical Ideas

Shint non		to student as	questioner
Teacher a	asks more	e probing que	stions

Shift from toachor to student as questioner

Shift from teacher as source of all ideas; use students' errors as a learning tool

Responsibility for learning

Students increasingly take this responsibility; self-regulation and self-evaluation

REVIEW OF CHAPTER 2

(1) How do you know when you understand something in math?

- (2) What do we know from learning theories?
- (3) What is mathematical thinking?
- (4) What is the role of the teacher in creating a culture of mathematical inquiry.

ON THE LIGHTER SIDE

