Math 3001 Due Fri Sept 23 Assignment #2

1. Find the area and the perimeter of the fractal called Koch snowflake.

Solution:

Let s denote the length of a side of the triangle and let A_n denote the area of the figure after the n^{th} iteration. Then

$$A_{0} = \frac{\sqrt{3}}{4}s^{2}$$

$$A_{1} = A_{0} + 3\frac{\sqrt{3}}{4}\left(\frac{s}{3}\right)^{2}$$

$$A_{2} = A_{1} + 12\frac{\sqrt{3}}{4}\left(\frac{s}{9}\right)^{2}$$

$$A_{3} = A_{2} + 48\frac{\sqrt{3}}{4}\left(\frac{s}{27}\right)^{2}$$

$$\Rightarrow A_{n} = A_{0}(1 + 3(\frac{s}{3})^{2} + 12(\frac{1}{9})^{2} + \cdots)$$

$$= A_{0}\left(1 + \frac{1}{3} + \frac{1}{3}\left(\frac{4}{9}\right) + \frac{1}{3}\left(\frac{16}{81}\right) + \cdots\right)$$

$$= A_{0}\left(1 + \frac{1}{3}\sum_{k=0}^{n}\left(\frac{4}{9}\right)^{k}\right)$$

$$= \frac{8}{5}A_{0}$$

Let P_n denote the perimeter of the figure after the n^{th} iteration.

```
P_0 = 3s
P_1 = 3\left(\frac{4}{3}\right)s
P_2 = 3\left(\frac{16}{9}\right)s
\Rightarrow P_n = 3\left(\frac{4}{3}\right)^n s
```

Since $\frac{4}{3} > 1$, $P_n \to \infty$. \Box

2. Let f be a bounded function on [a, b]. Show that $L(f, P) \leq U(f, Q)$ for any two partitions P and Q of the segment.

Solution:

Let P and Q be partitions of [a, b]. Define $R = P \cup Q$. Then R is a partition of [a, b] and a refinement of P and Q. Thus,

$$L(f, P) \le L(f, R) \le U(f, R) \le U(f, Q).$$

Thus, $L(f, P) \leq U(f, Q)$. \Box

3. Let $f(x) = x^3$. Consider partition $P_n = (0, 1/n, 2/n, ...n/n)$ of [0, 1]. Find $L(f, P_n), U(f, P_n), L(f), U(f)$, and $\int_0^1 f(x) dx$.

Solution:

Let $d_i = x_i - x_{i-1}$. Then $d_i = 1/n$ for all *i*. Let $m_i = \inf\{f(x) \mid x \in [x_{i-1}, x_i]\}$ and $M_i = \sup\{f(x) \mid x \in [x_{i-1}, x_i]\}$.

Then $m_i = \left(\frac{i-1}{n}\right)^3$, $M_i = \left(\frac{i}{n}\right)^3$ for all *i*. So

$$L(f, P_n) = \sum_{i=1}^n m_i d_i = \frac{1}{n^4} \sum_{i=0}^{n-1} i^3 = \frac{(n-1)^2}{4n^2}$$

Similarly, we have

$$U(f, P_n) = \sum_{i=1}^n M_i d_i = \frac{1}{n^4} \sum_{i=1}^n i^3 = \frac{(n+1)^2}{4n^2}$$

Now we have $\lim_{n\to\infty} L(f, P_n) = L(f) = 1/4$. Also, $\lim_{n\to\infty} U(f, P_n) = U(f) = 1/4$. Therefore, since L(f) = U(f) = 1/4, we have $\int_0^1 f(x) dx = 1/4$. \Box

4. Give an example of a function which is not integrable on [a, b], but f^2 is integrable on [a, b].

Example:

Consider the function

$$f(x) = \begin{cases} 1, & \text{if } x \text{ is rational} \\ -1, & \text{if } x \text{ is irrational} \end{cases}$$

Then f is not integrable, but $f^2 = 1$ is integrable. \Box

5. Let f be continuous and non-negative on [a, b]. Show that if L(f) = 0 then f(x) = 0 for all $x \in [a, b]$.

Solution: Since f is continuous, f is integrable. Thus, L(f) = 0 = U(f). Hence $\int_a^b f(x) dx = 0$. Since f is non-negative on [a, b], if f(x) > 0 for some $x \in [a, b]$, then $\int_a^b f(x) dx > 0$, which is a contradiction. Therefore, f(x) = 0 for all $x \in [a, b]$. \Box

- 6. Let S be a finite set of points on [a, b]. Let f be bounded and f(x) = 0 for all x outside from S. Show that f is integrable and ∫_a^b f(x)dx = 0.
 Solution: Let g(x) be a function on [a, b] such that g(x) = 0 for all x ∈ [a, b]. Then g is R D integrable on [a, b]. Now f is obtained by altering the values of g at a finite number of points (those in S). Hence, by Theorem 5.2.7 in the text, f is integrable on [a, b]. Also, ∫_a^b f = ∫_a^b g = 0. □
- 7. Define $F : [0,1] \to R$ by F(x) = x, if x is rational, and F(x) = 0 if x is irrational.
 - a) Show that U(f, P) > 1/2 for any partition P.
 - b) Show that $\lim_{n\to\infty} U(f, P_n) = 1/2$ for $P_n = (0, 1/n, 2/n, ...n/n)$.
 - c) Is the function integrable?

Solutions:

(a) Let P be a partition of [0,1] and let $d_i = x_i - x_{i-1}$. Now we notice that $M_i = x_i$ on each subinterval $[x_{i-1}, x_i]$. So we use the value $M_i d_i$ to approximate the area beneath the graph of F on the subinterval $[x_{i-1}, x_i]$. As you can see from the picture below, this area is greater than the area beneath the graph of y = x on the same interval $[x_{i-1}, x_i]$. This is true for all subintervals of the partition P. Thus, $U(F, P) > \int_0^1 x \, dx = 1/2$.

Another way to prove that U(f, P) > 1/2 for all partitions P of [0, 1] is as follows: Let P be a partition of the interval [0, 1]. Then

$$U(f,P) = \sum_{i=1}^{n} x_i d_i > \sum_{i=1}^{n} \frac{x_i + x_{i-1}}{2} d_i = \frac{1}{2} \sum_{i=1}^{n} (x_i^2 - x_{i-1}^2) = 1/2$$

(b) Let $d_i = x_i - x_{i-1}$. Then $d_i = 1/n$ for all *i*. Let $M_i = \sup\{F(x) \mid x \in [x_{i-1}, x_i]\}$. Then $M_i = i/n$ for all *i*. So

$$U(f, P_n) = \sum_{i=1}^n M_i d_i = \frac{1}{n^2} \sum_{i=1}^n i = \frac{n(n+1)}{2n^2}.$$

Therefore, $\lim_{n\to\infty} U(f, P_n) = 1/2$.

(c) No. Let P be a partition of [0, 1]. Then each subinterval contains irrational numbers. Hence, $m_i = 0$ for each i. Thus $L(F) = 0 \neq 1/2 = U(F)$. Therefore, F is not integrable.

8. Extra Points Problem

- a) For which functions, if any, $|\int_a^b f(x)dx| = \int_a^b |f(x)|dx$?
- b) For which functions, if any, $|\int_a^b f(x)dx| > \int_a^b |f(x)|dx$?
- c) For which functions, if any, $\left|\int_{a}^{b} f(x)dx\right| < \int_{a}^{b} |f(x)|dx$?

Solutions:

- (a) This is true for all functions f(x), which are integrable on [a, b], where $f(x) \ge 0$ or $f(x) \le 0$ for all $x \in [a, b]$.
- (b) This is false for all functions f(x) which are integrable on [a, b].
- (c) This is true for all functions f(x) which are integrable on [a, b] and which admit both positive and negative values on the interval [a, b].