1. Find the area and the perimeter of the fractal called Koch snowflake.

Solution:

Let s denote the length of a side of the triangle and let A_{n} denote the area of the figure after the $n^{\text {th }}$ iteration. Then

$$
\begin{aligned}
A_{0} & =\frac{\sqrt{3}}{4} s^{2} \\
A_{1} & =A_{0}+3 \frac{\sqrt{3}}{4}\left(\frac{s}{3}\right)^{2} \\
A_{2} & =A_{1}+12 \frac{\sqrt{3}}{4}\left(\frac{s}{9}\right)^{2} \\
A_{3} & =A_{2}+48 \frac{\sqrt{3}}{4}\left(\frac{s}{27}\right)^{2} \\
\Rightarrow A_{n} & =A_{0}\left(1+3\left(\frac{s}{3}\right)^{2}+12\left(\frac{1}{9}\right)^{2}+\cdots\right) \\
& =A_{0}\left(1+\frac{1}{3}+\frac{1}{3}\left(\frac{4}{9}\right)+\frac{1}{3}\left(\frac{16}{81}\right)+\cdots\right) \\
& =A_{0}\left(1+\frac{1}{3} \sum_{k=0}^{n}\left(\frac{4}{9}\right)^{k}\right) \\
& =\frac{8}{5} A_{0}
\end{aligned}
$$

Let P_{n} denote the perimeter of the figure after the $n^{\text {th }}$ iteration.

$$
\begin{aligned}
P_{0} & =3 s \\
P_{1} & =3\left(\frac{4}{3}\right) s \\
P_{2} & =3\left(\frac{16}{9}\right) s \\
\Rightarrow P_{n} & =3\left(\frac{4}{3}\right)^{n} s
\end{aligned}
$$

Since $\frac{4}{3}>1, P_{n} \rightarrow \infty$.
2. Let f be a bounded function on $[a, b]$. Show that $L(f, P) \leq U(f, Q)$ for any two partitions P and Q of the segment.

Solution:

Let P and Q be partitions of $[a, b]$. Define $R=P \cup Q$. Then R is a partition of $[a, b]$ and a refinement of P and Q. Thus,

$$
L(f, P) \leq L(f, R) \leq U(f, R) \leq U(f, Q)
$$

Thus, $L(f, P) \leq U(f, Q)$.
3. Let $f(x)=x^{3}$. Consider partition $P_{n}=(0,1 / n, 2 / n, \ldots n / n)$ of $[0,1]$.

Find $L\left(f, P_{n}\right), U\left(f, P_{n}\right), L(f), U(f)$, and $\int_{0}^{1} f(x) d x$.

Solution:

Let $d_{i}=x_{i}-x_{i-1}$. Then $d_{i}=1 / n$ for all i. Let

$$
m_{i}=\inf \left\{f(x) \mid x \in\left[x_{i-1}, x_{i}\right]\right\} \text { and } M_{i}=\sup \left\{f(x) \mid x \in\left[x_{i-1}, x_{i}\right]\right\} .
$$

Then $m_{i}=\left(\frac{i-1}{n}\right)^{3}, M_{i}=\left(\frac{i}{n}\right)^{3}$ for all i. So

$$
L\left(f, P_{n}\right)=\sum_{i=1}^{n} m_{i} d_{i}=\frac{1}{n^{4}} \sum_{i=0}^{n-1} i^{3}=\frac{(n-1)^{2}}{4 n^{2}}
$$

Similarly, we have

$$
U\left(f, P_{n}\right)=\sum_{i=1}^{n} M_{i} d_{i}=\frac{1}{n^{4}} \sum_{i=1}^{n} i^{3}=\frac{(n+1)^{2}}{4 n^{2}}
$$

Now we have $\lim _{n \rightarrow \infty} L\left(f, P_{n}\right)=L(f)=1 / 4$. Also, $\lim _{n \rightarrow \infty} U\left(f, P_{n}\right)=$ $U(f)=1 / 4$. Therefore, since $L(f)=U(f)=1 / 4$, we have $\int_{0}^{1} f(x) d x=1 / 4$.
4. Give an example of a function which is not integrable on $[a, b]$, but f^{2} is integrable on $[a, b]$.

Example:

Consider the function

$$
f(x)= \begin{cases}1, & \text { if } x \text { is rational } \\ -1, & \text { if } x \text { is irrational }\end{cases}
$$

Then f is not integrable, but $f^{2}=1$ is integrable.
5. Let f be continuous and non-negative on $[a, b]$. Show that if $L(f)=0$ then $f(x)=0$ for all $x \in[a, b]$.
Solution: Since f is continuous, f is integrable. Thus, $L(f)=0=U(f)$. Hence $\int_{a}^{b} f(x) d x=0$. Since f is non-negative on $[a, b]$, if $f(x)>0$ for some $x \in[a, b]$, then $\int_{a}^{b} f(x) d x>0$, which is a contradiction. Therefore, $f(x)=0$ for all $x \in[a, b]$.
6. Let S be a finite set of points on $[a, b]$. Let f be bounded and $f(x)=0$ for all x outside from S. Show that f is integrable and $\int_{a}^{b} f(x) d x=0$.
Solution: Let $g(x)$ be a function on $[a, b]$ such that $g(x)=0$ for all $x \in[a, b]$. Then g is $R-D$ integrable on $[a, b]$. Now f is obtained by altering the values of g at a finite number of points (those in S). Hence, by Theorem 5.2.7 in the text, f is integrable on $[a, b]$. Also, $\int_{a}^{b} f=\int_{a}^{b} g=0$.
7. Define $F:[0,1] \rightarrow R$ by $F(x)=x$, if x is rational, and $F(x)=0$ if x is irrational.
a) Show that $U(f, P)>1 / 2$ for any partition P.
b) Show that $\lim _{n \rightarrow \infty} U\left(f, P_{n}\right)=1 / 2$ for $P_{n}=(0,1 / n, 2 / n, \ldots n / n)$.
c) Is the function integrable?

Solutions:

(a) Let P be a partition of $[0,1]$ and let $d_{i}=x_{i}-x_{i-1}$. Now we notice that $M_{i}=x_{i}$ on each subinterval $\left[x_{i-1}, x_{i}\right]$. So we use the value $M_{i} d_{i}$ to approximate the area beneath the graph of F on the subinterval $\left[x_{i-1}, x_{i}\right]$. As you can see from the picture below, this area is greater than the area beneath the graph of $y=x$ on the same interval $\left[x_{i-1}, x_{i}\right]$. This is true for all subintervals of the partition P. Thus, $U(F, P)>\int_{0}^{1} x d x=1 / 2$.

Another way to prove that $U(f, P)>1 / 2$ for all partitions P of $[0,1]$ is as follows: Let P be a partition of the interval $[0,1]$. Then

$$
U(f, P)=\sum_{i=1}^{n} x_{i} d_{i}>\sum_{i=1}^{n} \frac{x_{i}+x_{i-1}}{2} d_{i}=\frac{1}{2} \sum_{i=1}^{n}\left(x_{i}^{2}-x_{i-1}^{2}\right)=1 / 2
$$

(b) Let $d_{i}=x_{i}-x_{i-1}$. Then $d_{i}=1 / n$ for all i. Let

$$
M_{i}=\sup \left\{F(x) \mid x \in\left[x_{i-1}, x_{i}\right]\right\} \text {. Then } M_{i}=i / n \text { for all } i \text {. So }
$$

$$
U\left(f, P_{n}\right)=\sum_{i=1}^{n} M_{i} d_{i}=\frac{1}{n^{2}} \sum_{i=1}^{n} i=\frac{n(n+1)}{2 n^{2}} .
$$

Therefore, $\lim _{n \rightarrow \infty} U\left(f, P_{n}\right)=1 / 2$.
(c) No. Let P be a partition of $[0,1]$. Then each subinterval contains irrational numbers. Hence, $m_{i}=0$ for each i. Thus $L(F)=0 \neq 1 / 2=U(F)$. Therefore, F is not integrable.

8. Extra Points Problem

a) For which functions, if any, $\left|\int_{a}^{b} f(x) d x\right|=\int_{a}^{b}|f(x)| d x$?
b) For which functions, if any, $\left|\int_{a}^{b} f(x) d x\right|>\int_{a}^{b}|f(x)| d x$?
c) For which functions, if any, $\left|\int_{a}^{b} f(x) d x\right|<\int_{a}^{b}|f(x)| d x$?

Solutions:

(a) This is true for all functions $f(x)$, which are integrable on $[a, b]$, where $f(x) \geq 0$ or $f(x) \leq 0$ for all $x \in[a, b]$.
(b) This is false for all functions $f(x)$ which are integrable on $[a, b]$.
(c) This is true for all functions $f(x)$ which are integrable on $[a, b]$ and which admit both positive and negative values on the interval $[a, b]$.

