
Math 3001 Due Fri Nov 25
Assignment #9

1. Prove Abel’s theorem:

Let
∑∞

n=0 anx
n have radius of convergence R = 1, and let

∑∞
n=0 an be

convergent. Then

lim
x→1

∞∑
n=0

anx
n =

∞∑
n=0

an.

Proof. If
∞∑

n=0

anx
n has radius of convergence R = 1, and

∞∑
n=0

an con-

verges then f(x) =
∞∑

n=0

anx
n converges uniformly on [0, 1]. Thus, f(x)

is continuous on [0, 1]. Therefore,

lim
x→1−

f(x) = f(1) =
∞∑

n=0

an

2. Use the statement obtained in Problem 1 and Cauchy’s theorem about
multiplication of two absolutely convergent series to show that(

∞∑
n=0

an

)(
∞∑

n=0

bn

)
=

(
∞∑

n=0

cn

)
, cn = a0bn + a1bn−1 + · · ·+ anb0,

if all there series converge (not necessarily absolutely).

P.S. This statement was published by Abel in 1826.

Proof. Let A(x) =
∑

anx
n, B(x) =

∑
bnx

n, and C(x) =
∑

cnx
n.

Since
∑

an,
∑

bn, and
∑

cn are all convergent, the series A(x), B(x),
and C(x) are all absolutely convergent for |x| < 1. So, by Cauchy’s
Theorem, we have

A(x) ·B(x) = C(x) on (0, 1).

Hence, by Abel’s Theorem,

lim
x→1−

A(x) · lim
x→1−

B(x) = lim
x→1−

C(x).



Therefore, we have(
∞∑

n=0

an

)(
∞∑

n=0

bn

)
=

(
∞∑

n=0

cn

)
, cn = a0bn + a1bn−1 + · · ·+ anb0,

3. A) For which values of x ∈R the sequence

Sn = |
n∑

k=1

cos(kx)|

is bounded?

Solution:
We use the fact that 2 cos a sin b = sin(a + b)− sin(a− b). So

2 sin(x/2)
n∑

k=1

cos(kx) =
n∑

k=1

(
sin
(
(k + 1/2)x

)
− sin

(
(k − 1/2)x

))
= sin

(
2n + 1

2
x

)
− sin

(x

2

)
(telescoping series)

= 2 cos

(
n + 1

2
x

)
sin
(nx

2

)
,

since sin u− sin v = 2 cos

(
u + v

2

)
sin

(
u− v

2

)
Thus we have∣∣∣∣∣

n∑
k=1

cos(kx)

∣∣∣∣∣ < 1

|sin(x/2)|
, where x 6= 2mπ, m ∈ Z

B) Let sequence {fn}∞n=1 be monotone and limn→∞ fn = 0. For which
values of x ∈R the trigonometric series

∑∞
n=1 fn cos(nx) converges?

Solution:
By Dirichlet’s Theorem, if fn is monotone and convergent to 0 and∣∣∣∣∣

N∑
n=1

an

∣∣∣∣∣ < K for all N , then
∞∑

n=1

anfn converges. In 3a, we have shown

that |
∑

cos(nx)| is bounded for x 6= 2mπ for any m ∈ Z. Thus,∑∞
n=1 fn cos(nx) converges for all x 6= 2mπ.
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4. A) Explain why series

∞∑
n=1

−(−1)n sin(nx)

n

converges uniformly on (π + δ, π − δ) for any 0 < δ < π.

Solution:

By Dirichlet-Abel-Hardy Theorem, we know that
∞∑

n=1

sin(nx)

n
converges

uniformly on [δ, 2π − δ] since |
∑

sin(nx)| < csc(x/2). Also, since
csc(x/2) is unbounded as x → 0+ or x → 2π−, we need δ > 0 for
uniformly bounded. Now if we change x → x + π then we get

sin(nx) → sin(nx + nπ)

= sin(nx) cos(nπ) + sin(nπ) cos(nx)

= (−1)n sin(nx)

Therefore, we have

∞∑
n=1

sin(nx)

n
converges on (δ, 2π−δ)

x→ x + π−−−−−→
∞∑

n=1

(−1)n sin(nx)

n
converges on (−π+δ, π−δ).

This implies that
∞∑

n=1

−(−1)n sin(nx)

n
converges on (−π+δ, π−δ) as well.

B) Show that the series in (A) is the Fourier series for function F (x) = x/2
on (−π, π).

Solution:
The Fourier series of a function is given by

f(x) =
1

2
a0 +

∞∑
n=1

an cos nx +
∞∑

n=1

bn sin nx.

Since f(x) =
x

2
is an odd function we have a0 = an = 0. So we now
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need to find bn.

bn =
1

π

∫ π

−π

x sin(nx)

2
dx

=
1

2π

(
−x cos(nx)

n

∣∣∣∣π
−π

+
1

n

∫ π

−π

cos(nx) dx

)

=
(−1)n+1

n

Therefore, we have

f(x) =
x

2
=

∞∑
n=1

−(−1)n sin(nx)

n

C) Evaluate
∞∑

n=1

(−1)n sin(5πn/4)

n

Solution:

Since x =
5π

4
6∈ (−π, π) and sin x has a period of 2π, we need to

evaluate the series at x =
−3π

4
=

5π

4
− 2π. Thus,

∞∑
n=1

(−1)n sin(5πn/4)

n
=

∞∑
n=1

(−1)n sin(−3πn/4)

n

=
−x

2

∣∣∣∣x =
−3π

4
=

3π

8

5. Give an example of a function for which corresponded to it Fourier
series has only finite number of terms.

Solution:
Some examples: any constant function, sin(x), cos(x), etc.

6. EXTRA POINTS We have seen that the function defined as F (x) =
e−x−2

for x 6= 0 and F (x) = 0 for x = 0 is not equal to its Taylor series
centered at zero for all x 6= 0.

Consider now Taylor series centered at a 6= 0 for this function. Can
you use it to evaluate F (0)?
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