Assignment \#9

1. Prove Abel's theorem:

Let $\sum_{n=0}^{\infty} a_{n} x^{n}$ have radius of convergence $R=1$, and let $\sum_{n=0}^{\infty} a_{n}$ be convergent. Then

$$
\lim _{x \rightarrow 1} \sum_{n=0}^{\infty} a_{n} x^{n}=\sum_{n=0}^{\infty} a_{n}
$$

Proof. If $\sum_{n=0}^{\infty} a_{n} x^{n}$ has radius of convergence $R=1$, and $\sum_{n=0}^{\infty} a_{n}$ converges then $f(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$ converges uniformly on $[0,1]$. Thus, $f(x)$ is continuous on $[0,1]$. Therefore,

$$
\lim _{x \rightarrow 1^{-}} f(x)=f(1)=\sum_{n=0}^{\infty} a_{n}
$$

2. Use the statement obtained in Problem 1 and Cauchy's theorem about multiplication of two absolutely convergent series to show that

$$
\left(\sum_{n=0}^{\infty} a_{n}\right)\left(\sum_{n=0}^{\infty} b_{n}\right)=\left(\sum_{n=0}^{\infty} c_{n}\right), \quad c_{n}=a_{0} b_{n}+a_{1} b_{n-1}+\cdots+a_{n} b_{0}
$$

if all there series converge (not necessarily absolutely).
P.S. This statement was published by Abel in 1826.

Proof. Let $A(x)=\sum a_{n} x^{n}, B(x)=\sum b_{n} x^{n}$, and $C(x)=\sum c_{n} x^{n}$. Since $\sum a_{n}, \sum b_{n}$, and $\sum c_{n}$ are all convergent, the series $A(x), B(x)$, and $C(x)$ are all absolutely convergent for $|x|<1$. So, by Cauchy's Theorem, we have

$$
A(x) \cdot B(x)=C(x) \text { on }(0,1) .
$$

Hence, by Abel's Theorem,

$$
\lim _{x \rightarrow 1^{-}} A(x) \cdot \lim _{x \rightarrow 1^{-}} B(x)=\lim _{x \rightarrow 1^{-}} C(x) .
$$

Therefore, we have

$$
\left(\sum_{n=0}^{\infty} a_{n}\right)\left(\sum_{n=0}^{\infty} b_{n}\right)=\left(\sum_{n=0}^{\infty} c_{n}\right), \quad c_{n}=a_{0} b_{n}+a_{1} b_{n-1}+\cdots+a_{n} b_{0}
$$

3. A) For which values of $x \in \mathbf{R}$ the sequence

$$
S_{n}=\left|\sum_{k=1}^{n} \cos (k x)\right|
$$

is bounded?

Solution:

We use the fact that $2 \cos a \sin b=\sin (a+b)-\sin (a-b)$. So

$$
\begin{aligned}
2 \sin (x / 2) \sum_{k=1}^{n} \cos (k x)= & \sum_{k=1}^{n}(\sin ((k+1 / 2) x)-\sin ((k-1 / 2) x)) \\
= & \sin \left(\frac{2 n+1}{2} x\right)-\sin \left(\frac{x}{2}\right) \quad \text { (telescoping series) } \\
= & 2 \cos \left(\frac{n+1}{2} x\right) \sin \left(\frac{n x}{2}\right) \\
& \operatorname{since} \sin u-\sin v=2 \cos \left(\frac{u+v}{2}\right) \sin \left(\frac{u-v}{2}\right)
\end{aligned}
$$

Thus we have

$$
\left|\sum_{k=1}^{n} \cos (k x)\right|<\frac{1}{|\sin (x / 2)|}, \text { where } x \neq 2 m \pi, m \in \mathbb{Z}
$$

B) Let sequence $\left\{f_{n}\right\}_{n=1}^{\infty}$ be monotone and $\lim _{n \rightarrow \infty} f_{n}=0$. For which values of $x \in \mathbf{R}$ the trigonometric series $\sum_{n=1}^{\infty} f_{n} \cos (n x)$ converges?

Solution:

By Dirichlet's Theorem, if f_{n} is monotone and convergent to 0 and $\left|\sum_{n=1}^{N} a_{n}\right|<K$ for all N, then $\sum_{n=1}^{\infty} a_{n} f_{n}$ converges. In $3 a$, we have shown
that $\left|\sum \cos (n x)\right|$ is bounded for $x \neq 2 m \pi$ for any $m \in \mathbb{Z}$. Thus,
$\sum_{n=1}^{\infty} f_{n} \cos (n x)$ converges for all $x \neq 2 m \pi$.
4. A) Explain why series

$$
\sum_{n=1}^{\infty} \frac{-(-1)^{n} \sin (n x)}{n}
$$

converges uniformly on $(\pi+\delta, \pi-\delta)$ for any $0<\delta<\pi$.

Solution:

By Dirichlet-Abel-Hardy Theorem, we know that $\sum_{n=1}^{\infty} \frac{\sin (n x)}{n}$ converges
uniformly on $[\delta, 2 \pi-\delta]$ since $\left|\sum \sin (n x)\right|<\csc (x / 2)$. Also, since $\csc (x / 2)$ is unbounded as $x \rightarrow 0^{+}$or $x \rightarrow 2 \pi^{-}$, we need $\delta>0$ for uniformly bounded. Now if we change $x \rightarrow x+\pi$ then we get

$$
\begin{aligned}
\sin (n x) & \rightarrow \sin (n x+n \pi) \\
& =\sin (n x) \cos (n \pi)+\sin (n \pi) \cos (n x) \\
& =(-1)^{n} \sin (n x)
\end{aligned}
$$

Therefore, we have
$\sum_{n=1}^{\infty} \frac{\sin (n x)}{n}$ converges on $(\delta, 2 \pi-\delta) \xrightarrow{x \rightarrow x+\pi} \sum_{n=1}^{\infty}(-1)^{n} \frac{\sin (n x)}{n}$ converges on $(-\pi+\delta, \pi-\delta)$.
This implies that $\sum_{n=1}^{\infty}-(-1)^{n} \frac{\sin (n x)}{n}$ converges on $(-\pi+\delta, \pi-\delta)$ as well.
B) Show that the series in (A) is the Fourier series for function $F(x)=x / 2$ on $(-\pi, \pi)$.

Solution:

The Fourier series of a function is given by

$$
f(x)=\frac{1}{2} a_{0}+\sum_{n=1}^{\infty} a_{n} \cos n x+\sum_{n=1}^{\infty} b_{n} \sin n x .
$$

Since $f(x)=\frac{x}{2}$ is an odd function we have $a_{0}=a_{n}=0$. So we now
need to find b_{n}.

$$
\begin{aligned}
b_{n} & =\frac{1}{\pi} \int_{-\pi}^{\pi} \frac{x \sin (n x)}{2} d x \\
& =\frac{1}{2 \pi}\left(\left.\frac{-x \cos (n x)}{n}\right|_{-\pi} ^{\pi}+\frac{1}{n} \int_{-\pi}^{\pi} \cos (n x) d x\right) \\
& =\frac{(-1)^{n+1}}{n}
\end{aligned}
$$

Therefore, we have

$$
f(x)=\frac{x}{2}=\sum_{n=1}^{\infty} \frac{-(-1)^{n} \sin (n x)}{n}
$$

C) Evaluate

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n} \sin (5 \pi n / 4)}{n}
$$

Solution:

Since $x=\frac{5 \pi}{4} \notin(-\pi, \pi)$ and $\sin x$ has a period of 2π, we need to evaluate the series at $x=\frac{-3 \pi}{4}=\frac{5 \pi}{4}-2 \pi$. Thus,

$$
\begin{aligned}
\sum_{n=1}^{\infty} \frac{(-1)^{n} \sin (5 \pi n / 4)}{n} & =\sum_{n=1}^{\infty} \frac{(-1)^{n} \sin (-3 \pi n / 4)}{n} \\
& =\left.\frac{-x}{2}\right|^{x=\frac{-3 \pi}{4}}=\frac{3 \pi}{8}
\end{aligned}
$$

5. Give an example of a function for which corresponded to it Fourier series has only finite number of terms.

Solution:

Some examples: any constant function, $\sin (x), \cos (x)$, etc.
6. EXTRA POINTS We have seen that the function defined as $F(x)=$ $e^{-x^{-2}}$ for $x \neq 0$ and $F(x)=0$ for $x=0$ is not equal to its Taylor series centered at zero for all $x \neq 0$.
Consider now Taylor series centered at $a \neq 0$ for this function. Can you use it to evaluate $F(0)$?

