1. Prove Abel's theorem:

Let $\sum_{n=0}^{\infty} a_{n} x^{n}$ have radius of convergence $R=1$, and let $\sum_{n=0}^{\infty} a_{n}$ be convergent. Then

$$
\lim _{x \rightarrow 1} \sum_{n=0}^{\infty} a_{n} x^{n}=\sum_{n=0}^{\infty} a_{n} .
$$

2. Use the statement obtained in Problem 1 and Cauchy's theorem about multiplication of two absolutely convergent series to show that

$$
\left(\sum_{n=0}^{\infty} a_{n}\right)\left(\sum_{n=0}^{\infty} b_{n}\right)=\left(\sum_{n=0}^{\infty} c_{n}\right), \quad c_{n}=a_{0} b_{n}+a_{1} b_{n-1}+\cdots+a_{n} b_{0}
$$

if all there series converge (not necessarily absolutely).
P.S. This statement was published by Abel in 1826.
3. A) For which values of $x \in \mathbf{R}$ the sequence

$$
S_{n}=\left|\sum_{k=1}^{n} \cos (k x)\right|
$$

is bounded?
B) Let sequence $\left\{f_{n}\right\}_{n=1}^{\infty}$ be monotone and $\lim _{n \rightarrow \infty} f_{n}=0$. For which values of $x \in \mathbf{R}$ the trigonometric series $\sum_{n=1}^{\infty} f_{n} \cos (n x)$ converges?
4. A) Explain why series

$$
\sum_{n=1}^{\infty} \frac{-(-1)^{n} \sin (n x)}{n}
$$

converges uniformly on $(-\pi+\delta, \pi-\delta)$ for any $0<\delta<\pi$.
B) Show that the series in (A) is the Fourier series for function $F(x)=x / 2$ on $(-\pi, \pi)$.
C) Evaluate

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n} \sin (5 \pi n / 4)}{n}
$$

5. Give an example of a function for which corresponded to it Fourier series has only finite number of terms.
6. EXTRA POINTS We have seen that the function defined as $F(x)=e^{-x^{-2}}$ for $x \neq 0$ and $F(x)=0$ for $x=0$ is not equal to its Taylor series centered at zero for all $x \neq 0$.
Consider now Taylor series centered at $a \neq 0$ for this function. Can you use it to evaluate $F(0)$?
