Math 3001 Due Wed Nov 16 Assignment #8

1. Prove the statement

A) Let $f_n(x)$ be continuous on [a, b] and the series $\sum_{n=1}^{\infty} f_n(x)$ converge uniformly to f(x) on [a, b]. Then $\int_a^b f(x) dx = \sum_{n=1}^{\infty} \int_a^b f_n(x) dx$.

Proof. Let
$$S_n(x) = \sum_{i=1}^n f_i(x)$$
. Then we have
 $S_n(x) \xrightarrow{\text{uniform}} f(x) = \sum_{n=1}^\infty f_n(x) \text{ on } [a, b].$

Since $f_n(x)$ is continuous on [a, b] for all n we have $S_n(x)$ and f(x) is continuous on [a, b] for all n. Hence, $S_n(x)$ and f(x) is integrable on [a, b] for all n. Thus, by uniform convergence of sequences, we have

$$\int_{a}^{b} f(x) = \lim_{n \to \infty} \int_{a}^{b} S_{n}(x)$$
$$= \lim_{n \to \infty} \int_{a}^{b} \sum_{i=1}^{n} f_{i}(x)$$
$$= \lim_{n \to \infty} \sum_{i=1}^{n} \int_{a}^{b} f_{i}(x)$$
$$= \sum_{n=1}^{\infty} \int_{a}^{b} f_{n}(x)$$

B) Let $\sum_{n=1}^{\infty} f_n(x)$ be a series of functions that converges to f(x) on [a, b]. Suppose that $f'_n(x)$ exists and is continuous on [a, b] for all n = 0, 1, ..., and the series $\sum_{n=1}^{\infty} f'_n(x)$ converges uniformly to g(x) on [a, b]. Then g(x) = f'(x) on [a, b].

Proof. Let $S_n(x) = \sum_{i=1}^n f_i(x)$. Then we have $S_n(x) \xrightarrow{\text{uniform}} f(x) = \sum_{n=1}^\infty f_n(x) \text{ on } [a, b].$ We are also given that $S'_n(x)$ exists and is continuous on [a, b] for all n. Thus we have

$$S'_n(x) \xrightarrow{\text{uniform}} g(x) = \sum_{n=1}^{\infty} f'_n(x) \text{ on } [a, b].$$

And by uniform convergence of sequences we have f'(x) = g(x).

2. (a) Show that

$$\int_0^x \ln(1+t) \, dt = \sum_{n=1}^\infty \frac{(-1)^{n-1} x^{n+1}}{n(n+1)}, \quad |x| < 1.$$

Solution:

Let $t, x \in (-1, 1)$. Consider the following equations:

$$\begin{aligned} \frac{1}{1-t} &= 1+t+t^2+t^3+\cdots \\ \Rightarrow \frac{1}{1+t} &= 1-t+t^2-t^3+\cdots \\ \Rightarrow \int \frac{1}{1+t} dt &= \int 1 \, dt - \int t \, dt + \int t^2 \, dt - \int t^3 \, dt + \cdots \\ \Rightarrow \ln(1+t) &= t - \frac{t^2}{2} + \frac{t^3}{3} - \frac{t^4}{4} + \cdots \\ \Rightarrow \int_0^x \ln(1+t) \, dt &= \int_0^x t \, dt - \int_0^x \frac{t^2}{2} \, dt + \int_0^x \frac{t^3}{3} \, dt - \int_0^x \frac{t^4}{4} \, dt + \cdots \\ &= \frac{x^2}{2} - \frac{x^3}{6} + \frac{x^4}{12} - \frac{x^5}{20} + \cdots \\ &= \sum_{n=1}^\infty \frac{(-1)^{n-1} x^{n+1}}{n(n+1)}, \quad |x| < 1. \end{aligned}$$

(b) Does (a) hold for |x| = 1?

Solution:

When x = 1 we have the series $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n(n+1)}$ which converges by A.S.T.

When x = -1 we have the series $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$ which converges by direct comparison with $\sum_{n=1}^{\infty} \frac{1}{n^2}$. So (a) holds for |x| = 1.

(c) Show that

$$\frac{1}{1\cdot 2} - \frac{1}{2\cdot 3} + \frac{1}{3\cdot 4} - \frac{1}{4\cdot 5} + \dots = \ln 4 - 1.$$

Solution:

We have, from (a), that

$$\int_0^x \ln(1+t) dt = \sum_{n=1}^\infty \frac{(-1)^{n-1} x^{n+1}}{n(n+1)}$$

$$\Rightarrow (1+x) \ln(1+x) - (1+x) + 1 = \sum_{n=1}^\infty \frac{(-1)^{n-1} x^{n+1}}{n(n+1)}$$

So when we let x = 1 we have

$$\ln 4 - 1 = \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n(n+1)}.$$

- 3. Find the Taylor series at $x_0 = 0$ for
 - (a) $x \sin(3x^2)$;

Solution:

We have

$$\sin(x) = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{(2n+1)!}$$
$$\Rightarrow \sin(3x^2) = \sum_{n=0}^{\infty} \frac{(-1)^n (3x^2)^{2n+1}}{(2n+1)!}$$
$$\Rightarrow x \sin(3x^2) = \sum_{n=0}^{\infty} \frac{(-1)^n 3^{2n+1} x^{4n+3}}{(2n+1)!}$$

(b) $\int_0^x e^{-t^2} dt$.

Solution:

We have

$$e^{t} = \sum_{n=0}^{\infty} \frac{t^{n}}{n!}$$

$$\Rightarrow e^{-t^{2}} = \sum_{n=0}^{\infty} \frac{(-t^{2})^{n}}{n!}$$

$$\Rightarrow \int_{0}^{x} e^{-t^{2}} dt = \sum_{n=0}^{\infty} \int_{0}^{x} \frac{(-1)^{n} t^{2n}}{n!} dt$$

$$= \sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2n+1}}{n! (2n+1)}$$

4. Consider the Bessel function

$$J_0(x) = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{4^n (n!)^2}.$$

(a) Find the radius of convergence;

Solution: Let $a_n = \frac{1}{4^n (n!)^2}$. Then we have

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \frac{1}{4(n+1)^2} = 0$$

Therefore, $R = \infty$.

(b) show that $y(x) = J_0(x)$ is a solution of the differential equation

$$xy'' + y' + xy = 0.$$

Solution:

We have

$$\begin{aligned} xy'' + y' + xy &= \sum_{n=0}^{\infty} \frac{(-1)^n 2n(2n-1)x^{2n-1}}{4^n (n!)^2} + \sum_{n=0}^{\infty} \frac{(-1)^n 2nx^{2n-1}}{4^n (n!)^2} + \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{4^n (n!)^2} \\ &= \sum_{n=0}^{\infty} \frac{(-1)^n 4n^2 x^{2n-1}}{4^n (n!)^2} + \sum_{n=1}^{\infty} \frac{(-1)^{n-1} x^{2n-1}}{4^{n-1} ((n-1)!)^2} \\ &= \sum_{n=1}^{\infty} \frac{(-1)^n 4n^2 x^{2n-1}}{4^n (n!)^2} + \sum_{n=1}^{\infty} \frac{(-1)^{n-1} 4n^2 x^{2n-1}}{4^n (n!)^2} = 0 \end{aligned}$$

5. Find the function given by the series

$$\sum_{n=1}^{\infty} \frac{(-1)^n x^{2n+2}}{2n+2}.$$

Solution:

We know that

$$\ln(1+x) = \sum_{n=0}^{\infty} \frac{(-1)^n x^{n+1}}{n+1}$$

Thus, we have

$$\frac{1}{2}\ln(1+x^2) = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+2}}{2n+2}$$
$$\Rightarrow \frac{\ln(1+x^2) - 1}{2} = \sum_{n=1}^{\infty} \frac{(-1)^n x^{2n+2}}{2n+2}$$

6. EXTRA POINTS

Find the limit for each $x \in \mathbf{R}$.

$$\lim_{n \to \infty} \frac{\sum_{k=1}^{n} \cos\left(\frac{kx}{n}\right)}{n}$$

Is the convergence uniform on \mathbf{R} ?

Solution:

Consider the function $f(t) = \frac{\cos(t)}{x}$ on interval [0, x], where $x \in \mathbb{R}$. Let $P = \{x_0, x_1, \dots, x_n\}$ be a partition of the interval [0, x]. Then $\Delta x_k = \frac{x}{n}$ and $c_k = \frac{xk}{n}$, where c_k is the right endpoint of the k^{th}

subinterval of P. Thus,

$$\lim_{n \to \infty} \sum_{k=1}^{n} f(c_k) \Delta x_k = \lim_{n \to \infty} \sum_{k=1}^{n} \left(\frac{\cos(\frac{kx}{n})}{x} \right) \frac{x}{n}$$
$$= \lim_{n \to \infty} \sum_{k=1}^{n} \frac{\cos(\frac{kx}{n})}{n}$$
$$= \int_0^x \frac{\cos(t)}{x} dt = \frac{\sin(x)}{x}$$

This convergence is not uniform on \mathbb{R} since $\frac{\sum_{k=1}^{n} \cos\left(\frac{kx}{n}\right)}{n}$ is continuous for all n, k, and x, but $\frac{\sin(x)}{x}$ is discontinuous at x = 0.