Math 3001 Due Wed Nov 16
Assignment #8

1. Prove the statement

A) Let f,(z) be continuous on [a, b] and the series ), f,(z) converge
uniformly to f(x) on [a,b]. Then f; flz)de =327, fab fo(2) dz

Proof. Let S,( Z fi(z). Then we have
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Since f,(x) is continuous on [a, b] for all n we have S, (x) and f(z) is
continuous on [a,b] for all n. Hence, S, (x) and f(x) is integrable on
la, b] for all n. Thus, by uniform convergence of sequences, we have
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B) Let >~ fu(x) be a series of functions that converges to f(z) on
la,b]. Suppose that f/(x) exists and is continuous on [a, b] for all n =

0,1,..., and the series Y >° | f/ () converges uniformly to g(z) on [a, b].
Then g(z) = f'(z) on [a,b].

Proof. Let S,( Z fi(z). Then we have

Sn(x) unlform an on CL b



We are also given that S/ (x) exists and is continuous on [a, b] for all n.
Thus we have

S,;L( ) unlform Zf on CL b

And by uniform convergence of sequences we have f'(z) = g(x). O

. (a) Show that
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Solution:
Let t,z € (—1,1). Consider the following equations:
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(b) Does (a) hold for |z| =17
Solution:
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When £ = 1 we have the series Z b))

> m which converges by A.S.T.
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When z = —1 we have the series Z which converges by direct
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comparison with Z —- So (a) holds for |z| = 1.
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(c) Show that

foo=Ind—1.

Solution:
We have, from (a), that
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So when we let x = 1 we have
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. Find the Taylor series at xy = 0 for

(a) zsin(32?);

Solution:
We have
. e (_1)n$2n+1
sin(z) Z —_
—~ (2n+1)!
e —1)" 2\2n+1
= sin(3m2) Z( )"(327)

= rsin(32?)

(b) [y e dt.

(2n +1)!

3
i
)

(_ 1)n32n+1x4n+3

(2n +1)!

hE

i
o



Solution:

We have
[oe) tn
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4. Consider the Bessel function
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(a) Find the radius of convergence;
Solution:
Let a,, = W Then we have
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Therefore, R = oo.
(b) show that y(z) = Jo(x) is a solution of the differential equation

oy +y' +xy =0.



Solution:

We have
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Find the function given by the series
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Solution:
We know that
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Thus, we have
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. EXTRA POINTS
Find the limit for each = €R.
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Is the convergence uniform on R?
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Solution:

t
Consider the function f(t) = cos(t)

on interval [0, z], where = € R.

Let P = {xo,21,...,2, } be a partition of the interval [0, z]. Then

x xk
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n n

subinterval of P. Thus,
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This convergence 18 not uniform on R since 1s continuous

sin(z
for all n, k, and z, but L is discontinuous at z = 0.
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