Assignment \#8

1. Prove the statement
A) Let $f_{n}(x)$ be continuous on $[a, b]$ and the series $\sum_{n=1}^{\infty} f_{n}(x)$ converge uniformly to $f(x)$ on $[a, b]$. Then $\int_{a}^{b} f(x) d x=\sum_{n=1}^{\infty} \int_{a}^{b} f_{n}(x) d x$.

Proof. Let $S_{n}(x)=\sum_{i=1}^{n} f_{i}(x)$. Then we have

$$
S_{n}(x) \xrightarrow{\text { uniform }} f(x)=\sum_{n=1}^{\infty} f_{n}(x) \text { on }[a, b] \text {. }
$$

Since $f_{n}(x)$ is continuous on $[a, b]$ for all n we have $S_{n}(x)$ and $f(x)$ is continuous on $[a, b]$ for all n. Hence, $S_{n}(x)$ and $f(x)$ is integrable on $[a, b]$ for all n. Thus, by uniform convergence of sequences, we have

$$
\begin{aligned}
\int_{a}^{b} f(x) & =\lim _{n \rightarrow \infty} \int_{a}^{b} S_{n}(x) \\
& =\lim _{n \rightarrow \infty} \int_{a}^{b} \sum_{i=1}^{n} f_{i}(x) \\
& =\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \int_{a}^{b} f_{i}(x) \\
& =\sum_{n=1}^{\infty} \int_{a}^{b} f_{n}(x)
\end{aligned}
$$

B) Let $\sum_{n=1}^{\infty} f_{n}(x)$ be a series of functions that converges to $f(x)$ on $[a, b]$. Suppose that $f_{n}^{\prime}(x)$ exists and is continuous on $[a, b]$ for all $n=$ $0,1, \ldots$, and the series $\sum_{n=1}^{\infty} f_{n}^{\prime}(x)$ converges uniformly to $g(x)$ on $[a, b]$. Then $g(x)=f^{\prime}(x)$ on $[a, b]$.

Proof. Let $S_{n}(x)=\sum_{i=1}^{n} f_{i}(x)$. Then we have

$$
S_{n}(x) \xrightarrow{\text { uniform }} f(x)=\sum_{n=1}^{\infty} f_{n}(x) \text { on }[a, b] .
$$

We are also given that $S_{n}^{\prime}(x)$ exists and is continuous on $[a, b]$ for all n. Thus we have

$$
S_{n}^{\prime}(x) \xrightarrow{\text { uniform }} g(x)=\sum_{n=1}^{\infty} f_{n}^{\prime}(x) \text { on }[a, b] .
$$

And by uniform convergence of sequences we have $f^{\prime}(x)=g(x)$.
2. (a) Show that

$$
\int_{0}^{x} \ln (1+t) d t=\sum_{n=1}^{\infty} \frac{(-1)^{n-1} x^{n+1}}{n(n+1)}, \quad|x|<1 .
$$

Solution:

Let $t, x \in(-1,1)$. Consider the following equations:

$$
\begin{aligned}
\frac{1}{1-t} & =1+t+t^{2}+t^{3}+\cdots \\
\Rightarrow \frac{1}{1+t} & =1-t+t^{2}-t^{3}+\cdots \\
\Rightarrow \int \frac{1}{1+t} d t & =\int 1 d t-\int t d t+\int t^{2} d t-\int t^{3} d t+\cdots \\
\Rightarrow \ln (1+t) & =t-\frac{t^{2}}{2}+\frac{t^{3}}{3}-\frac{t^{4}}{4}+\cdots \\
\Rightarrow \int_{0}^{x} \ln (1+t) d t & =\int_{0}^{x} t d t-\int_{0}^{x} \frac{t^{2}}{2} d t+\int_{0}^{x} \frac{t^{3}}{3} d t-\int_{0}^{x} \frac{t^{4}}{4} d t+\cdots \\
& =\frac{x^{2}}{2}-\frac{x^{3}}{6}+\frac{x^{4}}{12}-\frac{x^{5}}{20}+\cdots \\
& =\sum_{n=1}^{\infty} \frac{(-1)^{n-1} x^{n+1}}{n(n+1)}, \quad|x|<1 .
\end{aligned}
$$

(b) Does (a) hold for $|x|=1$?

Solution:

When $x=1$ we have the series $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n(n+1)}$ which converges by A.S.T.

When $x=-1$ we have the series $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$ which converges by direct comparison with $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$. So (a) holds for $|x|=1$.
(c) Show that

$$
\frac{1}{1 \cdot 2}-\frac{1}{2 \cdot 3}+\frac{1}{3 \cdot 4}-\frac{1}{4 \cdot 5}+\cdots=\ln 4-1 .
$$

Solution:

We have, from (a), that

$$
\begin{aligned}
\int_{0}^{x} \ln (1+t) d t & =\sum_{n=1}^{\infty} \frac{(-1)^{n-1} x^{n+1}}{n(n+1)} \\
\Rightarrow(1+x) \ln (1+x)-(1+x)+1 & =\sum_{n=1}^{\infty} \frac{(-1)^{n-1} x^{n+1}}{n(n+1)}
\end{aligned}
$$

So when we let $x=1$ we have

$$
\ln 4-1=\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n(n+1)}
$$

3. Find the Taylor series at $x_{0}=0$ for
(a) $x \sin \left(3 x^{2}\right)$;

Solution:

We have

$$
\begin{aligned}
\sin (x) & =\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{(2 n+1)!} \\
\Rightarrow \sin \left(3 x^{2}\right) & =\sum_{n=0}^{\infty} \frac{(-1)^{n}\left(3 x^{2}\right)^{2 n+1}}{(2 n+1)!} \\
\Rightarrow x \sin \left(3 x^{2}\right) & =\sum_{n=0}^{\infty} \frac{(-1)^{n} 3^{2 n+1} x^{4 n+3}}{(2 n+1)!}
\end{aligned}
$$

(b) $\int_{0}^{x} e^{-t^{2}} d t$.

Solution:

We have

$$
\begin{aligned}
e^{t} & =\sum_{n=0}^{\infty} \frac{t^{n}}{n!} \\
\Rightarrow e^{-t^{2}} & =\sum_{n=0}^{\infty} \frac{\left(-t^{2}\right)^{n}}{n!} \\
\Rightarrow \int_{0}^{x} e^{-t^{2}} d t & =\sum_{n=0}^{\infty} \int_{0}^{x} \frac{(-1)^{n} t^{2 n}}{n!} d t \\
& =\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{n!(2 n+1)}
\end{aligned}
$$

4. Consider the Bessel function

$$
J_{0}(x)=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n}}{4^{n}(n!)^{2}} .
$$

(a) Find the radius of convergence;

Solution:

Let $a_{n}=\frac{1}{4^{n}(n!)^{2}}$. Then we have

$$
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty} \frac{1}{4(n+1)^{2}}=0
$$

Therefore, $R=\infty$.
(b) show that $y(x)=J_{0}(x)$ is a solution of the differential equation

$$
x y^{\prime \prime}+y^{\prime}+x y=0 .
$$

Solution:

We have

$$
\begin{aligned}
x y^{\prime \prime}+y^{\prime}+x y & =\sum_{n=0}^{\infty} \frac{(-1)^{n} 2 n(2 n-1) x^{2 n-1}}{4^{n}(n!)^{2}}+\sum_{n=0}^{\infty} \frac{(-1)^{n} 2 n x^{2 n-1}}{4^{n}(n!)^{2}}+\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{4^{n}(n!)^{2}} \\
& =\sum_{n=0}^{\infty} \frac{(-1)^{n} 4 n^{2} x^{2 n-1}}{4^{n}(n!)^{2}}+\sum_{n=1}^{\infty} \frac{(-1)^{n-1} x^{2 n-1}}{4^{n-1}((n-1)!)^{2}} \\
& =\sum_{n=1}^{\infty} \frac{(-1)^{n} 4 n^{2} x^{2 n-1}}{4^{n}(n!)^{2}}+\sum_{n=1}^{\infty} \frac{(-1)^{n-1} 4 n^{2} x^{2 n-1}}{4^{n}(n!)^{2}}=0
\end{aligned}
$$

5. Find the function given by the series

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n} x^{2 n+2}}{2 n+2}
$$

Solution:

We know that

$$
\ln (1+x)=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{n+1}}{n+1}
$$

Thus, we have

$$
\begin{aligned}
\frac{1}{2} \ln \left(1+x^{2}\right) & =\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+2}}{2 n+2} \\
\Rightarrow \frac{\ln \left(1+x^{2}\right)-1}{2} & =\sum_{n=1}^{\infty} \frac{(-1)^{n} x^{2 n+2}}{2 n+2}
\end{aligned}
$$

6. EXTRA POINTS

Find the limit for each $x \in \mathbf{R}$.

$$
\lim _{n \rightarrow \infty} \frac{\sum_{k=1}^{n} \cos \left(\frac{k x}{n}\right)}{n}
$$

Is the convergence uniform on \mathbf{R} ?

Solution:

Consider the function $f(t)=\frac{\cos (t)}{x}$ on interval $[0, x]$, where $x \in \mathbb{R}$.
Let $P=\left\{x_{0}, x_{1}, \ldots, x_{n}\right\}$ be a partition of the interval $[0, x]$. Then $\Delta x_{k}=\frac{x}{n}$ and $c_{k}=\frac{x k}{n}$, where c_{k} is the right endpoint of the $k^{\text {th }}$ subinterval of P. Thus,

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \sum_{k=1}^{n} f\left(c_{k}\right) \Delta x_{k} & =\lim _{n \rightarrow \infty} \sum_{k=1}^{n}\left(\frac{\cos \left(\frac{k x}{n}\right)}{x}\right) \frac{x}{n} \\
& =\lim _{n \rightarrow \infty} \sum_{k=1}^{n} \frac{\cos \left(\frac{k x}{n}\right)}{n} \\
& =\int_{0}^{x} \frac{\cos (t)}{x} d t=\frac{\sin (x)}{x}
\end{aligned}
$$

This convergence is not uniform on \mathbb{R} since $\frac{\sum_{k=1}^{n} \cos \left(\frac{k x}{n}\right)}{n}$ is continuous for all n, k, and x, but $\frac{\sin (x)}{x}$ is discontinuous at $x=0$.

