1. Prove the statement
A) Let $f_{n}(x)$ be continuous on $[a, b]$ and the series $\sum_{n=1}^{\infty} f_{n}(x)$ converge uniformly to $f(x)$ on $[a, b]$. Then $\int_{a}^{b} f(x) d x=\sum_{n=1}^{\infty} \int_{a}^{b} f_{n}(x) d x$.
B) Let $\sum_{n=1}^{\infty} f_{n}(x)$ be a series of functions that converges to $f(x)$ on $[a, b]$. Suppose that $f_{n}^{\prime}(x)$ exists and is continuous on $[a, b]$ for all $n=0,1, \ldots$, and the series $\sum_{n=1}^{\infty} f_{n}^{\prime}(x)$ converges uniformly to $g(x)$ on $[a, b]$. Then $g(x)=f^{\prime}(x)$ on $[a, b]$.
2. (a) Show that

$$
\int_{0}^{x} \ln (1+t) d t=\sum_{n=1}^{\infty} \frac{(-1)^{n-1} x^{n+1}}{n(n+1)}, \quad|x|<1
$$

(b) Does (a) hold for $|x|=1$?
(c) Show that

$$
\frac{1}{1 \cdot 2}-\frac{1}{2 \cdot 3}+\frac{1}{3 \cdot 4}-\frac{1}{4 \cdot 5}+\cdots=\ln 4-1
$$

3. Find the Taylor series at $x_{0}=0$ for
(a) $x \sin \left(3 x^{2}\right)$;
(b) $\int_{0}^{x} e^{-t^{2}} d t$.
4. Consider the Bessel function

$$
J_{0}(x)=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n}}{4^{n}(n!)^{2}} .
$$

(a) Find the radius of convergence;
(b) show that $y(x)=J_{0}(x)$ is a solution of the differential equation

$$
x y^{\prime \prime}+y^{\prime}+x y=0 .
$$

5. Find the function given by the series

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n} x^{2 n+2}}{2 n+2}
$$

6. EXTRA POINTS

Find the limit for each $x \in \mathbf{R}$.

$$
\lim _{n \rightarrow \infty} \frac{\sum_{k=1}^{n} \cos \left(\frac{k x}{n}\right)}{n}
$$

Is the convergence uniform on \mathbf{R} ?

