Math 3001 Due Wed Nov 9 Assignment #7

1. Find a function to which the series converges poinwise. Does it converge uniformly on the whole
domain?
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2. Prove a Theorem that if a sequence of continuous functions converges uniformly on a set S to a
function f, then f is continuous on S.

3. Using the Theorem about uniform convergence and continuity, determine whether or not the fol-
lowing sequence of functions converges uniformly on z € [0, 1]
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4. Find a sequence of functions (f,,) defined on [0, 1] such that each f, is discontinuous at each point
of [0, 1] and such that the sequence converges uniformly to a function f that is continuous on [0, 1].

5. Evaluate (with explainations)
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6. Integrate the geometric series
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term by term from —z to x, where 0 < x < 1 to find the series for In ”
you can do this.

Z. Explain the reason why

7. EXTRA POINTS

If possible, find a sequence of functions (f,,) defined on [0, 1] such that each f, is continuous at each
point of [0, 1] and such that the sequence converges uniformly to a function f that is discontinuous
at each point of on [0, 1].



