1. Let $\left\{a_{n}\right\}_{n=1}^{\infty}$ be a sequence of positive numbers. Prove that
A)

$$
\liminf \frac{a_{n+1}}{a_{n}} \leq \liminf a_{n}^{1 / n} \leq \limsup a_{n}^{1 / n} \leq \limsup \frac{a_{n+1}}{a_{n}}
$$

Solution. To prove the inequality on the right, let $\alpha=\limsup \frac{a_{n+1}}{a_{n}}$. If $\alpha=\infty$ the result is obvious. If α is finite, choose $\beta>\alpha$. Then there exists N such that $\frac{a_{n+1}^{a_{n}}}{a_{n}}<\beta$ for all $n>N$. That is for $n>N$ we have

$$
a_{n}<\beta a_{n-1}, \quad a_{n-1}<\beta a_{n-2}, \quad a_{N+1}<\beta a_{N} .
$$

Combine these inequalities to obtain $a_{N+k}<\beta^{k} a_{N}$, (for any $k \geq 1$) or equivaletly, that $a_{n}<c \beta^{n}$, where $c>0$ is a constant. Thus limsup $\left(a_{n}\right)^{1 / n} \leq \beta$. Since this holds for every $\beta>\alpha$, the desired inequality follows.
B)

$$
\lim _{n \rightarrow \infty} a_{n}^{1 / n}=\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}
$$

provided they both exist;
Solution. Recall, that if limit exists them limsup=liminf. Thus B) follows from A) in this case.
2. Give (if possible) an example of a power series which has the following interval of convergence
a) $(-1,1]$

Answer $\sum \frac{(-1)^{n}}{n} x^{n}$
b) $[-1,1)$

Answer $\sum \frac{1}{n} x^{n}$
c) $(-1 / 2,0) \cup(0,1 / 2)$

Answer Not possible.
d) $[2,4]$

Answer $\sum \frac{1}{n^{2}}(x-3)^{n}$
3. Let R be the radius of convergence for the power series $\sum a_{n} x^{n}$. If infinitely many of the coefficients a_{n} are nonzero integers, prove that $R \leq 1$.
Solution. If there are infinitly many coefficients such that $\left|a_{n}\right| \geq 1$ then $\alpha=\limsup \left|a_{n}\right|^{1 / n} \geq 1$. Thus $R=1 / \alpha \leq 1$.
4. Suppose that the series $\sum a_{n}$ diverges, but the sequence $\left\{a_{n}\right\}_{n=1}^{\infty}$ is bounded. What can you say about the radius of convergence of the power series $\sum a_{n} x^{n}$?
Solution. The radius is equal to 1 . The proof goes as follows:

1. Since the series $\sum a_{n}$ diverges the radius can't be greater then 1 .
2. Assume the radius is less then 1 .

Then $\alpha=\limsup \frac{a_{n}}{a_{n+1}}<1$. Thus for any β such that $\alpha<\beta<1$ there is N so that $\frac{a_{n}}{a_{n+1}}<\beta$ for all $n \geq N$.

But then $a_{n}<\beta a_{n+1}$ for all $n \geq N$. Thus
$a_{N}<\beta^{k} a_{N+k}$ for all $k \geq 1$. Here a_{N} is a constant.
So we get const $\beta^{-k}<a_{N+k}$. Since $\beta<1$, the sequence $\left\{a_{n}\right\}$ is shown to be unbounded, which is a contradiction. Thus the radius is not less then 1 , but is equal to 1 .
5. Prove that the series $\sum a_{n} x^{n}$ and $\sum n a_{n} x^{n}$ have the same radius of convergence.

Solution. $R=\limsup \frac{a_{n}}{a_{n+1}}=\limsup \frac{n a_{n}}{(n+1) a_{n+1}}$.
Here we use the following Theorem:
If sequence $\lim _{n \rightarrow \infty} r_{n}=r$ and s_{n} is a bounded sequense then

$$
\limsup s_{n} r_{n}=r \limsup s_{n} .
$$

In our case $r_{n}=\frac{n}{n+1}$.
6. Let $f_{n}(x)=x+\frac{1}{n}$ and $f(x)=x$ for $x \in R$.
a) Show that $\left(f_{n}\right)$ converges uniformly to f.

Solution. For every $x, \lim _{n \rightarrow \infty} x+\frac{1}{n}=x$. Thus $\left(f_{n}\right)$ converges to f pointwise.
Now, $\left|f_{n}-f\right|=\frac{1}{n}$. This difference is independent from x and thus for every ϵ there is N such that $\left|f_{n}-f\right|<\epsilon$ for $n>N$ and for all x at the same time. Thus the convergence is uniform.
b) Show that $\left(f_{n}\right)^{2}$ converges pointwise to f^{2}, but not uniformly.

Solution. For every $x, \lim _{n \rightarrow \infty}\left(x+\frac{1}{n}\right)^{2}=x^{2}$. Thus $\left(f_{n}^{2}\right)$ converges to f pointwise.
Now, $\left|f_{n}^{2}-f^{2}\right|=\frac{1}{n^{2}}+\frac{2 x}{n}$.
Since x arbitrarily large, there is to such a number N same for all x that $\left|f_{n}^{2}-f^{2}\right|$ would be less then ϵ for $n>N$. This number N depends on x, and thus the convergence in not uniform.
c) Is it true or false that $\left(f_{n}\right)^{2}$ converges uniformly to f^{2} on any finite segment, i.e. $x \in[a, b]$.

Answer Yes, it is true, considering previous discussionin b).
7. Give an example (if possible) of a sequence of functions $f_{n}(x)$ pointwise convergent to $f(x)$ on (a, b) such that
a) all $f_{n}(x)$ are continuous, but $f(x)$ is not.

Answer $f_{n}=x^{n}, 0 \leq x \leq 1$.
b) $\lim _{n \rightarrow \infty} f_{n}^{\prime}(x) \neq f^{\prime}(x)$.

Answer $f_{n}=(\sin (n x)) / \sqrt{n}$.
c) $\lim _{n \rightarrow \infty} \int_{a}^{b} f_{n}(x) d x \neq \int_{a}^{b} f(x) d x$.

Answer $f_{n}=n^{2} x$ for $0 \leq x \leq 1 / n, f_{n}=0$ for $1 / n \leq x \leq 1$.

8. EXTRA POINTS

Suppose $\left(f_{n}\right)$ converges poinwise to f on a set S. Prove that $\left(f_{n}\right)$ converges uniformly to f on every finite subset of S.

Answer On a finite set it is always possible to find N independent of the members of the set. Just take the maximum of all individual $N(x)$ w.r.to x.

