Due Wed Oct 26

1. Let $\{a_n\}_{n=1}^{\infty}$ be a sequence of positive numbers. Prove that A)

$$\operatorname{liminf} \frac{a_{n+1}}{a_n} \le \operatorname{liminf} a_n^{1/n} \le \operatorname{limsup} a_n^{1/n} \le \operatorname{limsup} \frac{a_{n+1}}{a_n}$$

Solution. To prove the inequality on the right, let $\alpha = \text{limsup} \frac{a_{n+1}}{a_n}$. If $\alpha = \infty$ the result is obvious. If α is finite, choose $\beta > \alpha$. Then there exists N such that $\frac{a_{n+1}}{a_n} < \beta$ for all n > N. That is for n > N we have

$$a_n < \beta a_{n-1}, \quad a_{n-1} < \beta a_{n-2}, \quad a_{N+1} < \beta a_N.$$

Combine these inequalities to obtain $a_{N+k} < \beta^k a_N$, (for any $k \ge 1$) or equivaletly, that $a_n < c\beta^n$, where c > 0 is a constant. Thus $\limsup(a_n)^{1/n} \le \beta$. Since this holds for every $\beta > \alpha$, the desired inequality follows.

B)

$$\lim_{n \to \infty} a_n^{1/n} = \lim_{n \to \infty} \frac{a_{n+1}}{a_n}$$

provided they both exist;

Solution. Recall, that if limit exists them limsup=liminf. Thus B) follows from A) in this case.

Give (if possible) an example of a power series which has the following interval of convergence

 a) (-1,1]

Answer $\sum \frac{(-1)^n}{n} x^n$ b) [-1, 1) Answer $\sum \frac{1}{n} x^n$ c) $(-1/2, 0) \cup (0, 1/2)$ Answer Not possible. d) [2,4] Answer $\sum \frac{1}{n^2} (x-3)^n$

3. Let R be the radius of convergence for the power series $\sum a_n x^n$. If infinitely many of the coefficients a_n are nonzero integers, prove that $R \leq 1$.

Solution. If there are infinitly many coefficients such that $|a_n| \ge 1$ then $\alpha = \lim \sup |a_n|^{1/n} \ge 1$. Thus $R = 1/\alpha \le 1$.

4. Suppose that the series $\sum a_n$ diverges, but the sequence $\{a_n\}_{n=1}^{\infty}$ is bounded. What can you say about the radius of convergence of the power series $\sum a_n x^n$?

Solution. The radius is equal to 1. The proof goes as follows:

1. Since the series $\sum a_n$ diverges the radius can't be greater then 1.

2. Assume the radius is less then 1.

Then $\alpha = \limsup_{a_{n+1}} \frac{a_n}{a_{n+1}} < 1$. Thus for any β such that $\alpha < \beta < 1$ there is N so that $\frac{a_n}{a_{n+1}} < \beta$ for all $n \ge N$.

But then $a_n < \beta a_{n+1}$ for all $n \ge N$. Thus

 $a_N < \beta^k a_{N+k}$ for all $k \ge 1$. Here a_N is a constant.

So we get $\operatorname{const}\beta^{-k} < a_{N+k}$. Since $\beta < 1$, the sequence $\{a_n\}$ is shown to be unbounded, which is a contradiction. Thus the radius is not less then 1, but is equal to 1.

5. Prove that the series $\sum a_n x^n$ and $\sum n a_n x^n$ have the same radius of convergence.

Solution. $R = \limsup_{a_{n+1}} a_n = \limsup_{n \in [n+1)} a_{n+1}$. Here we use the following Theorem:

If sequence $\lim_{n\to\infty} r_n = r$ and s_n is a bounded sequence then

 $\mathrm{limsup} s_n r_n = r \mathrm{limsup} s_n.$

In our case $r_n = \frac{n}{n+1}$.

6. Let $f_n(x) = x + \frac{1}{n}$ and f(x) = x for $x \in R$.

a) Show that (f_n) converges uniformly to f.

Solution. For every x, $\lim_{n\to\infty} x + \frac{1}{n} = x$. Thus (f_n) converges to f pointwise.

Now, $|f_n - f| = \frac{1}{n}$. This difference is independent from x and thus for every ϵ there is N such that $|f_n - f| < \epsilon$ for n > N and for all x at the same time. Thus the convergence is uniform.

b) Show that $(f_n)^2$ converges pointwise to f^2 , but not uniformly.

Solution. For every x, $\lim_{n\to\infty} (x+\frac{1}{n})^2 = x^2$. Thus (f_n^2) converges to f pointwise. Now, $|f_n^2 - f^2| = \frac{1}{n^2} + \frac{2x}{n}$.

Since x arbitrarily large, there is to such a number N same for all x that $|f_n^2 - f^2|$ would be less then ϵ for n > N. This number N depends on x, and thus the convergence in not uniform.

c) Is it true or false that $(f_n)^2$ converges uniformly to f^2 on any finite segment, i.e. $x \in [a, b]$.

Answer Yes, it is true, considering previous discussionin b).

- 7. Give an example (if possible) of a sequence of functions $f_n(x)$ pointwise convergent to f(x) on (a, b) such that
 - a) all $f_n(x)$ are continuous, but f(x) is not.
 - Answer $f_n = x^n$, $0 \le x \le 1$. b) $\lim_{n\to\infty} f'_n(x) \ne f'(x)$. Answer $f_n = (\sin(nx))/\sqrt{n}$. c) $\lim_{n\to\infty} \int_a^b f_n(x) dx \ne \int_a^b f(x) dx$. Answer $f_n = n^2 x$ for $0 \le x \le 1/n$, $f_n = 0$ for $1/n \le x \le 1$.

8. EXTRA POINTS

Suppose (f_n) converges poinwise to f on a set S. Prove that (f_n) converges uniformly to f on every **finite** subset of S.

Answer On a finite set it is always possible to find N independent of the members of the set. Just take the maximum of all individual N(x) w.r.to x.