Due Wed Oct 26

1. Let $\{a_n\}_{n=1}^{\infty}$ be a sequence of positive numbers. Prove that A)

$$\operatorname{liminf} \frac{a_{n+1}}{a_n} \le \operatorname{liminf} a_n^{1/n} \le \operatorname{limsup} a_n^{1/n} \le \operatorname{limsup} \frac{a_{n+1}}{a_n}$$

B)

$$\lim_{n\to\infty}a_n^{1/n}=\lim_{n\to\infty}\frac{a_{n+1}}{a_n}$$

provided they both exist;

- 2. Give (if possible) an example of a power series which has the following interval of convergence
 - a) (-1,1]
 - b) [1,-1)
 - c) $(-1/2, 0) \cup (0, 1/2)$
 - d) [2,4]
- 3. Let R be the radius of convergence for the power series $\sum a_n x^n$. If infinitely many of the coefficients a_n are nonzero integers, prove that $R \leq 1$.
- 4. Suppose that the series $\sum a_n$ diverges, but the sequence $\{a_n\}_{n=1}^{\infty}$ is bounded. What can you say about the radius of convergence of the power series $\sum a_n x^n$?
- 5. Prove that the series $\sum a_n x^n$ and $\sum n a_n x^n$ have the same radius of convergence.
- 6. Let $f_n(x) = x + \frac{1}{n}$ and f(x) = x for $x \in R$.
 - a) Show that (f_n) converges uniformly to f.
 - b) Show that $(f_n)^2$ converges pointwise to f^2 , but not uniformly.
 - c) Is it true or false that $(f_n)^2$ converges uniformly to f^2 on any finite segment, i.e. $x \in [a, b]$.
- 7. Give an example (if possible) of a sequence of functions $f_n(x)$ pointwise convergent to f(x) on (a, b) such that
 - a) all $f_n(x)$ are continuous, but f(x) is not.
 - b) $\lim_{n\to\infty} f'_n(x) \neq f'(x)$.
 - c) $\lim_{n\to\infty} \int_a^b f_n(x) \, dx \neq \int_a^b f(x) \, dx.$
- 8. EXTRA POINTS

Suppose (f_n) converges poinwise to f on a set S. Prove that (f_n) converges uniformly to f on every **finite** subset of S.