1. Let $\left\{a_{n}\right\}_{n=1}^{\infty}$ be a sequence of positive numbers. Prove that
A)

$$
\liminf \frac{a_{n+1}}{a_{n}} \leq \liminf a_{n}^{1 / n} \leq \limsup a_{n}^{1 / n} \leq \limsup \frac{a_{n+1}}{a_{n}}
$$

B)

$$
\lim _{n \rightarrow \infty} a_{n}^{1 / n}=\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}
$$

provided they both exist;
2. Give (if possible) an example of a power series which has the following interval of convergence
a) $(-1,1]$
b) $[1,-1)$
c) $(-1 / 2,0) \cup(0,1 / 2)$
d) $[2,4]$
3. Let R be the radius of convergence for the power series $\sum a_{n} x^{n}$. If infinitely many of the coefficients a_{n} are nonzero integers, prove that $R \leq 1$.
4. Suppose that the series $\sum a_{n}$ diverges, but the sequence $\left\{a_{n}\right\}_{n=1}^{\infty}$ is bounded. What can you say about the radius of convergence of the power series $\sum a_{n} x^{n}$?
5. Prove that the series $\sum a_{n} x^{n}$ and $\sum n a_{n} x^{n}$ have the same radius of convergence.
6. Let $f_{n}(x)=x+\frac{1}{n}$ and $f(x)=x$ for $x \in R$.
a) Show that $\left(f_{n}\right)$ converges uniformly to f.
b) Show that $\left(f_{n}\right)^{2}$ converges pointwise to f^{2}, but not uniformly.
c) Is it true or false that $\left(f_{n}\right)^{2}$ converges uniformly to f^{2} on any finite segment, i.e. $x \in[a, b]$.
7. Give an example (if possible) of a sequence of functions $f_{n}(x)$ pointwise convergent to $f(x)$ on (a, b) such that
a) all $f_{n}(x)$ are continuous, but $f(x)$ is not.
b) $\lim _{n \rightarrow \infty} f_{n}^{\prime}(x) \neq f^{\prime}(x)$.
c) $\lim _{n \rightarrow \infty} \int_{a}^{b} f_{n}(x) d x \neq \int_{a}^{b} f(x) d x$.

8. EXTRA POINTS

Suppose $\left(f_{n}\right)$ converges poinwise to f on a set S. Prove that $\left(f_{n}\right)$ converges uniformly to f on every finite subset of S.

