Assignment \#5

1. Given the series $\sum_{n=1}^{\infty} a_{n}$ and $\sum_{n=1}^{\infty} b_{n}$, suppose that there exists a number N such that $a_{n}=b_{n}$ for all $n>N$. Prove that $\sum_{n=1}^{\infty} a_{n}$ is convergent iff $\sum_{n=1}^{\infty} b_{n}$ is convergent.
Is it true that $\sum_{n=1}^{\infty} a_{n}=\sum_{n=1}^{\infty} b_{n}$?

Solution

We have

$$
\begin{aligned}
\sum_{i=1}^{\infty} a_{n} & =\sum_{i=1}^{N} a_{n}+\sum_{i=N+1}^{\infty} a_{n} \\
& =\sum_{i=1}^{N} a_{n}+\sum_{i=N+1}^{\infty} b_{n}
\end{aligned}
$$

So clearly, $\sum_{n=1}^{\infty} a_{n}$ is convergent iff $\sum_{n=1}^{\infty} b_{n}$ is convergent.
Also, it is not true that $\sum_{n=1}^{\infty} a_{n}=\sum_{n=1}^{\infty} b_{n}$ if $\sum_{n=1}^{N} a_{n} \neq \sum_{n=1}^{N} b_{n}$.
2. Determine whether or not the series $\sum_{n=1}^{\infty}(\sqrt{n+1}+\sqrt{n})^{-1}$ is convergent? Justify your answer.

Solution

We have $\sum_{n=1}^{\infty}(\sqrt{n+1}+\sqrt{n})^{-1}=\sum_{n=1}^{\infty} \sqrt{n+1}-\sqrt{n}$. Let S_{n} be the $n^{t h}$ partial sum of the series. Then we have
$S_{n}=(\sqrt{2}-1)+(\sqrt{3}-\sqrt{2})+(\sqrt{4}-\sqrt{3})+\cdots+(\sqrt{n+1}-\sqrt{n})=\sqrt{n+1}-1$,
which diverges as $n \rightarrow \infty$. Thus $\sum_{n=1}^{\infty}(\sqrt{n+1}+\sqrt{n})^{-1}$ diverges.
3. Let $\left\{x_{n}\right\}_{n=1}^{\infty}$ be a sequence of real numbers and let $y_{n}=x_{n}-x_{n+1}$ for all $n \geq 1$. Prove that the series $\sum_{n=1}^{\infty} y_{n}$ is convergent iff the sequence $\left\{x_{n}\right\}_{n=1}^{\infty}$ is convergent.
If the series $\sum_{n=1}^{\infty} y_{n}$ is convergent, what is the sum?

Solution

Let S_{n} be the $n^{\text {th }}$ partial sum of $\sum_{i=1}^{\infty} y_{n}$. Then

$$
S_{n}=\left(x_{1}-x_{2}\right)+\left(x_{2}-x_{3}\right)+\left(x_{3}-x_{4}\right)+\cdots+\left(x_{n}-x_{n+1}\right)=x_{1}-x_{n+1} .
$$

Thus we have $\lim _{n \rightarrow \infty} S_{n}=x_{1}-\lim _{n \rightarrow \infty} x_{n+1}$. Since $\sum_{i=1}^{\infty} y_{n}$ converges iff $\lim _{n \rightarrow \infty} S_{n}$ exists, we can see that $\sum_{i=1}^{\infty} y_{n}$ converges iff $\left\{x_{n}\right\}_{n=1}^{\infty}$ converges. Also, if $\sum_{i=1}^{\infty} y_{n}$ is convergent, the sum, S, is $S=x_{1}-x$, where $x=\lim _{n \rightarrow \infty} x_{n+1}$.
4. Find an example to show that the convergence of $\sum_{n=1}^{\infty} a_{n}$ and $\sum_{n=1}^{\infty} b_{n}$ not necessarily imply convergence of $\sum_{n=1}^{\infty} a_{n} b_{n}$.

Solution

Let $a_{n}=\frac{(-1)^{n}}{\sqrt{n}}=b_{n}$. Then $\sum a_{n}$ and $\sum b_{n}$ converges, but $\sum a_{n} b_{n}=$ $\sum \frac{1}{n}$ diverges.
5. Prove that if $\sum_{n=1}^{\infty}\left|a_{n}\right|$ converges and $\left\{b_{n}\right\}_{n=1}^{\infty}$ is a bounded sequence then $\sum_{n=1}^{\infty} a_{n} b_{n}$ converges.

Solution

Since $\left\{b_{n}\right\}_{n=1}^{\infty}$ is bounded, we have $b_{n} \leq K$ for all n and for some $K \in \mathbb{R}$. Also, since $\sum_{n=1}^{\infty}\left|a_{n}\right|$ converges, by Cauchy Criterion, given $\epsilon>0$, there exist N such that for all $n>m>N$ we have

$$
\left|S_{n}-S_{m}\right|=\left|\left|a_{n}\right|-\left|a_{n-1}\right|+\cdots+\left|a_{m+1}\right|\right|<\frac{\epsilon}{K}
$$

where S_{n} is the $n^{\text {th }}$ partial sum of $\sum_{n=1}^{\infty}\left|a_{n}\right|$. To show $\sum_{n=1}^{\infty} a_{n} b_{n}$ converges, we will use Cauchy Criterion again. For same N, and for all $m, n>N$, we have

$$
\begin{aligned}
\left|a_{n} b_{n}-a_{m} b_{m}\right| & =\left|a_{n} b_{n}+a_{n-1} b_{n-1}+\cdots+a_{m+1} b_{m+1}\right| \\
& \leq\left|a_{n} b_{n}\right|+\left|a_{n-1} b_{n-1}\right|+\cdots\left|a_{m+1} b_{m+1}\right| \\
& \leq K\left(\left|a_{n}\right|+\left|a_{n-1}\right|+\cdots\left|a_{m+1}\right|\right) \\
& \leq K\left(\| a_{n}\left|+\left|a_{n-1}\right|+\cdots\right| a_{m+1}| |\right) \\
& <K \frac{\epsilon}{K}=\epsilon
\end{aligned}
$$

Therefore, $\sum_{n=1}^{\infty} a_{n} b_{n}$ converges.
6. a)Show by example that grouping of terms may change a divergent series to convergent.
b)Is (a) possible for a divergent series with all nonnegative terms?
c)Is it possible to change the sum of a convergent series by grouping of terms?

Solutions

(a) Consider series $\sum_{n=0}^{\infty}(-1)^{n}$. This series is divergent, but we can group the terms to make it convergent. We can take a string

$$
1-1+1-1+1-1 \cdots
$$

and group them thus

$$
(1-1)+(1-1)+(1-1)+\cdots=0+0+0+\cdots
$$

(b) No
(c) No
7. Show that the series

$$
1-\frac{1}{2}+\frac{1}{3}-\frac{1}{2^{2}}+\frac{1}{5}-\frac{1}{2^{3}}+\frac{1}{7}-\frac{1}{2^{4}}+\cdots
$$

is divergent. Why doesn't this contradict the Alternating Series Test?

Solution

Consider the $2 n^{\text {th }}$ partial sum, $S_{2 n}$. Then we have

$$
\begin{aligned}
S_{2 n} & =1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\cdots+\frac{1}{2 n-1}-\frac{1}{2^{n}} \\
& =1+\frac{1}{3}+\frac{1}{5}+\cdots+\frac{1}{2 n-1}-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\cdots+\frac{1}{2^{n}}\right) \\
& =\sum_{i=0}^{n} \frac{1}{2 i+1}-\frac{1}{2} \sum_{i=0}^{n} \frac{1}{2^{n}}
\end{aligned}
$$

Since $\sum_{i=0}^{n} \frac{1}{2 i+1}$ diverges as $n \rightarrow \infty$ and $\sum_{i=0}^{n} \frac{1}{2^{n}}$ converges as $n \rightarrow \infty$, we have $S_{2 n}$ diverges as $n \rightarrow \infty$. Therefore, the series diverges.
Note that this does not contradict the Alternating series test since the absolute value of the terms are not monotonically decreasing.
8. Prove that if a series is conditionally convergent, then the series of its negative terms is divergent.

Solution

Let $\sum a_{n}$ be a conditionally convergent series. Let $q_{n}=\frac{\left|a_{n}\right|-a_{n}}{2}$.
Then the set $\left\{-q_{n}\right\}$ contains all the negative terms, but no positive terms, of $\sum a_{n}$. Assume that $\sum q_{n}$ converges. Since $\left|a_{n}\right|=2 q_{n}+a_{n}$ and $\sum a_{n}$ converges as well, we have $\sum\left|a_{n}\right|=2 \sum q_{n}+\sum a_{n}$ converges, which is a contradiction. Therefore, $\sum q_{n}$ diverges.
9. Suppose that $\sum_{n=1}^{\infty} a_{n}$ is conditionally convergent series, and s is a real number.
a)Explain why there exists a rearrangement of $\sum_{n=1}^{\infty} a_{n}$ that converges conditionally to s.
b)Is there a rearrangement of $\sum_{n=1}^{\infty} a_{n}$ that diverges?

Solutions

(a) The idea is to take first the positive terms until the sum exceeds s (which is possible since the series with positive terms diverges). Then, we take the negative terms until we are below s (which happens since the series of negative terms diverges). Then we go on adding positive terms until s is again exceeded, and so on. In this way, we obtain a rearranged series that converges to s.
(b) Yes

10. EXTRA POINTS

Let $a_{n}>0$ for all $n \geq 1$. Let $b_{n}=\left(a_{1}+a_{2}+\cdots+a_{n}\right) / n$. Is the series $\sum_{n=1}^{\infty} b_{n}$ converegnt or diveregnt? Explain.

Solution

Divergent by direct comparison. We have $b_{n} \geq \frac{a_{1}}{n}$ for all n. Since $\sum_{n=1}^{\infty} \frac{a_{1}}{n}$ diverges, we have $\sum_{n=1}^{\infty} b_{n}$ diverges.

