Math 3001 Due Wed Oct 19 Assignment #5

1. Given the series $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$, suppose that there exists a number N such that $a_n = b_n$ for all n > N. Prove that $\sum_{n=1}^{\infty} a_n$ is convergent iff $\sum_{n=1}^{\infty} b_n$ is convergent. Is it true that $\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} b_n$?

Solution We have

$$\sum_{i=1}^{\infty} a_n = \sum_{i=1}^{N} a_n + \sum_{i=N+1}^{\infty} a_n$$

$$= \sum_{i=1}^{N} a_n + \sum_{i=N+1}^{\infty} b_n$$

So clearly, $\sum_{n=1}^{\infty} a_n$ is convergent iff $\sum_{n=1}^{\infty} b_n$ is convergent.

Also, it is not true that $\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} b_n$ if $\sum_{n=1}^{N} a_n \neq \sum_{n=1}^{N} b_n$. \Box

2. Determine whether or not the series $\sum_{n=1}^{\infty} (\sqrt{n+1} + \sqrt{n})^{-1}$ is convergent? Justify your answer.

Solution

We have $\sum_{n=1}^{\infty} (\sqrt{n+1} + \sqrt{n})^{-1} = \sum_{n=1}^{\infty} \sqrt{n+1} - \sqrt{n}$. Let S_n be the n^{th} partial sum of the series. Then we have

$$S_n = (\sqrt{2}-1) + (\sqrt{3}-\sqrt{2}) + (\sqrt{4}-\sqrt{3}) + \dots + (\sqrt{n+1}-\sqrt{n}) = \sqrt{n+1}-1,$$

which diverges as $n \to \infty$. Thus $\sum_{n=1}^{\infty} (\sqrt{n+1} + \sqrt{n})^{-1}$ diverges.

3. Let $\{x_n\}_{n=1}^{\infty}$ be a sequence of real numbers and let $y_n = x_n - x_{n+1}$ for all $n \ge 1$. Prove that the series $\sum_{n=1}^{\infty} y_n$ is convergent iff the sequence $\{x_n\}_{n=1}^{\infty}$ is convergent.

If the series $\sum_{n=1}^{\infty} y_n$ is convergent, what is the sum?

Solution

Let S_n be the n^{th} partial sum of $\sum_{n=1}^{\infty} y_n$. Then $S_n = (x_1 - x_2) + (x_2 - x_3) + (x_3 - x_4) + \dots + (x_n - x_{n+1}) = x_1 - x_{n+1}.$ Thus we have $\lim_{n \to \infty} S_n = x_1 - \lim_{n \to \infty} x_{n+1}$. Since $\sum_{i=1}^{\infty} y_n$ converges iff $\lim_{n \to \infty} S_n$ exists, we can see that $\sum_{i=1}^{\infty} y_n$ converges iff $\{x_n\}_{n=1}^{\infty}$ converges. Also, if $\sum_{i=1}^{\infty} y_n$ is convergent, the sum, S, is $S = x_1 - x$, where $x = \lim_{n \to \infty} x_{n+1}$. \Box

4. Find an example to show that the convergence of $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ not necessarily imply convergence of $\sum_{n=1}^{\infty} a_n b_n$.

Solution
Let
$$a_n = \frac{(-1)^n}{\sqrt{n}} = b_n$$
. Then $\sum a_n$ and $\sum b_n$ converges, but $\sum a_n b_n = \sum \frac{1}{n}$ diverges.

5. Prove that if $\sum_{n=1}^{\infty} |a_n|$ converges and $\{b_n\}_{n=1}^{\infty}$ is a bounded sequence then $\sum_{n=1}^{\infty} a_n b_n$ converges.

Solution

Since $\{b_n\}_{n=1}^{\infty}$ is bounded, we have $b_n \leq K$ for all n and for some $K \in \mathbb{R}$. Also, since $\sum_{n=1}^{\infty} |a_n|$ converges, by Cauchy Criterion, given $\epsilon > 0$, there exist N such that for all n > m > N we have

$$|S_n - S_m| = ||a_n| - |a_{n-1}| + \dots + |a_{m+1}|| < \frac{\epsilon}{K},$$

where S_n is the n^{th} partial sum of $\sum_{n=1}^{\infty} |a_n|$. To show $\sum_{n=1}^{\infty} a_n b_n$ converges, we will use Cauchy Criterion again. For same N, and for all m, n > N, we have

$$\begin{aligned} |a_{n}b_{n} - a_{m}b_{m}| &= |a_{n}b_{n} + a_{n-1}b_{n-1} + \dots + a_{m+1}b_{m+1}| \\ &\leq |a_{n}b_{n}| + |a_{n-1}b_{n-1}| + \dots + |a_{m+1}b_{m+1}| \\ &\leq K \left(|a_{n}| + |a_{n-1}| + \dots + |a_{m+1}| \right) \\ &\leq K \left(||a_{n}| + |a_{n-1}| + \dots + |a_{m+1}|| \right) \\ &< K \frac{\epsilon}{K} = \epsilon. \end{aligned}$$

Therefore, $\sum_{n=1}^{\infty} a_{n}b_{n}$ converges. \Box

6. a)Show by example that *grouping of terms* may change a divergent series to convergent.

b)Is (a) possible for a divergent series with all nonnegative terms?

c)Is it possible to change the sum of a convergent series by grouping of terms?

Solutions

(a) Consider series $\sum_{n=0}^{\infty} (-1)^n$. This series is divergent, but we can group the terms to make it convergent. We can take a string

$$1 - 1 + 1 - 1 + 1 - 1 \cdots$$

and group them thus

$$(1-1) + (1-1) + (1-1) + \dots = 0 + 0 + 0 + \dots$$

(b) No

(c) No

7. Show that the series

$$1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{2^2} + \frac{1}{5} - \frac{1}{2^3} + \frac{1}{7} - \frac{1}{2^4} + \cdots$$

is divergent. Why doesn't this contradict the Alternating Series Test? Solution

Consider the $2n^{th}$ partial sum, S_{2n} . Then we have

$$S_{2n} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots + \frac{1}{2n-1} - \frac{1}{2^n}$$

= $1 + \frac{1}{3} + \frac{1}{5} + \dots + \frac{1}{2n-1} - \left(\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots + \frac{1}{2^n}\right)$
= $\sum_{i=0}^n \frac{1}{2i+1} - \frac{1}{2} \sum_{i=0}^n \frac{1}{2^n}$

Since $\sum_{i=0}^{n} \frac{1}{2i+1}$ diverges as $n \to \infty$ and $\sum_{i=0}^{n} \frac{1}{2^n}$ converges as $n \to \infty$,

we have S_{2n} diverges as $n \to \infty$. Therefore, the series diverges.

Note that this does not contradict the Alternating series test since the absolute value of the terms are not monotonically decreasing.

8. Prove that if a series is conditionally convergent, then the series of its negative terms is divergent.

Solution

Let $\sum a_n$ be a conditionally convergent series. Let $q_n = \frac{|a_n| - a_n}{2}$. Then the set $\{-q_n\}$ contains all the negative terms, but no positive terms, of $\sum a_n$. Assume that $\sum q_n$ converges. Since $|a_n| = 2q_n + a_n$ and $\sum a_n$ converges as well, we have $\sum |a_n| = 2 \sum q_n + \sum a_n$ converges, which is a contradiction. Therefore, $\sum q_n$ diverges. \Box

9. Suppose that $\sum_{n=1}^{\infty} a_n$ is conditionally convergent series, and s is a real number.

a) Explain why there exists a *rearrangement* of $\sum_{n=1}^{\infty} a_n$ that converges conditionally to s.

b) Is there a rearrangement of $\sum_{n=1}^{\infty} a_n$ that diverges?

Solutions

- (a) The idea is to take first the positive terms until the sum exceeds s (which is possible since the series with positive terms diverges). Then, we take the negative terms until we are below s (which happens since the series of negative terms diverges). Then we go on adding positive terms until s is again exceeded, and so on. In this way, we obtain a rearranged series that converges to s.
- (b) Yes
- 10. EXTRA POINTS

Let $a_n > 0$ for all $n \ge 1$. Let $b_n = (a_1 + a_2 + \dots + a_n)/n$. Is the series $\sum_{n=1}^{\infty} b_n$ convergent or divergent? Explain.

Solution

Divergent by direct comparison. We have $b_n \ge \frac{a_1}{n}$ for all n. Since $\sum_{n=1}^{\infty} \frac{a_1}{n}$ diverges, we have $\sum_{n=1}^{\infty} b_n$ diverges.