
Math 3001 Due Fri Oct 7
Assignment #4

1. Let f , g be integrable on [a, b]. Introduce notations

||f || = (

∫ b

a

f 2(x)dx)1/2, (f, g) =

∫ b

a

f(x)g(x)dx

a) Prove Cauchy-Swartz inequality |(f, g)| ≤ ||f || · ||g||.
Solution
Let λ ∈ R. Consider

0 ≤
∫ b

a
(f + λg)2 dx =

∫ b

a
f 2 dx + 2λ

∫ b

a
fg dx + λ2

∫ b

a
g2 dx

= ||f || 2 + 2λ(f, g) + λ2||g|| 2

If we consider the last line as a function in λ then we know that the
discriminant, b2 − 4ac ≤ 0. Thus,

[2(f, g)]2 − 4||f || 2 · ||g|| 2 ≤ 0

⇒ 4 [(f, g)]2 ≤ 4||f || 2 · ||g|| 2

|(f, g)| ≤ ||f || · ||g|| �

b) Show that Cauchy-Swartz inequality implies the triangle inequality

||f + g|| ≤ ||f ||+ ||g||.

Solution
||f + g|| 2 =

∫ b

a
(f + g)2 dx

=
∫ b

a
f 2 dx + 2

∫ b

a
fg dx +

∫ b

a
g2 dx

= ||f || 2 + 2(f, g) + ||g|| 2

≤ ||f || 2 + 2||f || · ||g||+ ||g|| 2

= (||f ||+ ||g||)2

⇒ ||f + g|| ≤ ||f ||+ ||g|| �



2. Find the second derivative F ′′(x)

a) F (x) =
∫ sin x

0
cos(t2)dt

Solution
F ′(x) = cos(sin2(x)) cos(x)

F ′′(x) = − sin(x) cos(sin2(x))− 2 sin(x) cos2(x) sin(sin2(x))

b) F (x) =
∫ x2

−x

√
1 + t2dt

Solution

F (x) = −
∫ −x

c

√
1 + t2 dt +

∫ x2

c

√
1 + t2 dt

F ′(x) =
√

1 + x2 + 2x
√

1 + x4

F ′′(x) =
x√

1 + x2
+ 2

√
1 + x4 +

4x4

√
1 + x4

c) F (x) =
∫ x

0
xet2dt

Solution

F (x) = x

∫ x

0

et2 dt

F ′(x) =

∫ x

0

et2 dt + xex2

F ′′(x) = 2ex2

(1 + x2)

3. Evaluate limx→0(x
−1

∫ x

0

√
9 + t2dt)

Solution

lim
x→0

∫ x

0

√
9 + t2

x
L′H
= lim

x→0

√
9 + x2 = 3

4. Let f be continuous on [a, b]. Suppose
∫ x

a
f(t)dt =

∫ b

x
f(t)dt for all

x ∈ [a, b]. Find function f .
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Solution
We have

∫ x

a
f(t)dt = −

∫ x

b
f(t)dt for all x ∈ [a, b]. Therefore, when we

differentiate both sides we get

f(x) = −f(x) ⇒ f(x) = 0.

5. Let f be continuous on [0,∞). Let f(x) 6= 0 for x > 0 and f 2(x) =
2
∫ x

0
f(t)dt. Find function f .

Solution
Differentiate both sides to get

2f(x)f ′(x) = 2f(x) ⇒ f ′(x) = 1 ⇒ f(x) = x + c for some c

We now solve for c. We have

f 2(x) = x2+2cx+c2 = 2

∫ x

0

(t+c) dt =
[
t2 + 2ct

]x

0
= x2+2cx ⇒ c = 0.

Therefore, f(x) = x.

6. Let In =
∫∞

0
x−ndx. For which real values n the integral In is conver-

gent?

Hint: consider separately
∫ 1

0
x−ndx and

∫∞
1

x−ndx

Solution
We have to consider the three cases n = 1, n < 1, and n > 1.

If n < 1, then
∫∞

1
x−n dx = lim t→∞ [x1−n/(1− n)]

t
1 = ∞. Therefore,∫∞

0
x−n dx diverges.

If n > 1, then
∫ 1

0
x−n dx = limc→0+ [x1−n/(1− n)]

1
c = ∞. Therefore,∫∞

0
x−n dx diverges.

If n = 1, then we have
∫∞

1
1
x
dx = lim t→∞ [ln x]t1 = ∞.

Therefore,
∫∞

0
x−n dx diverges for all n.�

7. Is the following argument correct? Explain.
∫ L

−L
sin xdx = 0 for any

L ≥ 0. Thus
∫∞
−∞ sin xdx = 0.

Solution
False. Consider

∫∞
0

sin(x) dx. Then lim t→∞
∫ t

0
sin(x) dx = lim t→∞ [− cos(x)]t0,

which diverges since cos(t) oscillates between −1, 1 as t → ∞. There-
fore,

∫∞
−∞ sin(x) dx diverges.
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8. Prove the following statement:

Let f be continuous on [a, b] and g be continuous on [c, d], where
f([a, b]) ⊂ [c, d]. Then the composition g ◦ f is integrable on [a, b].

Solution
Let x ∈ [a, b]. Then f is continuous at x. Since f(x) ∈ [c, d] and g is
continuous on [c, d], we have g is continuous at f(x). Therefore, g ◦f is
continuous at x. Since this is true for all x ∈ [a, b], g ◦ f is continuous
for all x ∈ [a, b], hence it is integrable on [a, b]. �

9. Extra Points Problem

Prove the following statement:

Let f be integrable on [a, b] and g be continuous on [c, d], where f([a, b]) ⊂
[c, d]. Then the composition g ◦ f is integrable on [a, b].

Proof: Given any ε > 0, let K = sup{|g(t)| : t ∈ [c, d]} and choose
ε′ > 0 such that ε′(b − a + 2K) < ε. Since g is continuous on [c, d],
it is uniformly continuous on [c, d]. Thus there exists a δ > 0 such
that δ < ε′ and such that |g(s) − g(t)| < ε′ whenever |s − t| < δ
and s, t ∈ [c, d]. Since f is integrable on [a, b], there exists a partition
P = {x0, x2 . . . , xn} of [a, b] such that

U(f, P )− L(f, P ) < δ2.

We claim that for this partition we also have

U(g ◦ f, P )− L(g ◦ f, P ) =
n∑

i=1

[Mi(g ◦ f)−mi(g ◦ f)] ∆xi < ε.

To show this, we separate the set of indices of the partitionP into two
disjoint sets.

A = {i : Mi(f)−mi(f) < δ} and B = {i : Mi(f)−mi(f) ≥ δ}.

Then if i ∈ A and x, y ∈ [xi−1, xi], we have

|f(x)− f(y)| ≤ Mi(f)−mi(f) < δ,

so that |g ◦ f(x)− g ◦ f(y)| < ε′. But then Mi(g ◦ f)−mi(g ◦ f) ≤ ε′.
It follows that∑

i∈A

[Mi(g ◦ f)−mi(g ◦ f)] ∆xi ≤ ε′
∑
i∈A

∆xi ≤ ε′(b− a).
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On the other hand, if i ∈ B, then [Mi(f)−mi(f)] /δ ≥ 1, so that∑
i∈B

∆xi ≤ 1

δ

∑
i∈B

[Mi(f)−mi(f)] ∆xi

≤ 1

δ
[U(f, P )− L(f, P )] < δ < ε′.

Thus since Mi(g ◦ f)−mi(g ◦ f) ≤ 2K for all i, we have∑
i∈B

[Mi(g ◦ f)−mi(g ◦ f)] ∆xi ≤ 2K
∑
i∈B

∆xi < 2Kε′.

Now when we combine all the indices we obtain

U(g ◦ f, P )− L(g ◦ f, P ) =
∑

i∈A [Mi(g ◦ f)−mi(g ◦ f)] ∆xi

+
∑

i∈B [Mi(g ◦ f)−mi(g ◦ f)] ∆xi

≤ ε′(b− a) + 2Kε′ = ε′(b− a + 2K) < ε.�
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