Math 3001

Assignment \#4

1. Let f, g be integrable on $[a, b]$. Introduce notations

$$
\|f\|=\left(\int_{a}^{b} f^{2}(x) d x\right)^{1 / 2}, \quad(f, g)=\int_{a}^{b} f(x) g(x) d x
$$

a) Prove Cauchy-Swartz inequality $|(f, g)| \leq\|f\| \cdot\|g\|$.

Solution

Let $\lambda \in \mathbb{R}$. Consider

$$
\begin{aligned}
0 \leq \int_{a}^{b}(f+\lambda g)^{2} d x & =\int_{a}^{b} f^{2} d x+2 \lambda \int_{a}^{b} f g d x+\lambda^{2} \int_{a}^{b} g^{2} d x \\
& =\|f\|^{2}+2 \lambda(f, g)+\lambda^{2}\|g\|^{2}
\end{aligned}
$$

If we consider the last line as a function in λ then we know that the discriminant, $b^{2}-4 a c \leq 0$. Thus,

$$
\begin{aligned}
{[2(f, g)]^{2}-4\|f\|^{2} \cdot\|g\|^{2} } & \leq 0 \\
\Rightarrow 4[(f, g)]^{2} & \leq 4\|f\|^{2} \cdot\|g\|^{2} \\
|(f, g)| & \leq\|f\| \cdot\|g\| \square
\end{aligned}
$$

b) Show that Cauchy-Swartz inequality implies the triangle inequality

$$
\|f+g\| \leq\|f\|+\|g\| .
$$

Solution

$$
\begin{aligned}
\|f+g\|^{2} & =\int_{a}^{b}(f+g)^{2} d x \\
& =\int_{a}^{b} f^{2} d x+2 \int_{a}^{b} f g d x+\int_{a}^{b} g^{2} d x \\
& =\|f\|^{2}+2(f, g)+\|g\|^{2} \\
& \leq\|f\|^{2}+2\|f\| \cdot\|g\|+\|g\|^{2} \\
& =(\|f\|+\|g\|)^{2} \\
\Rightarrow\|f+g\| & \leq\|f\|+\|g\|
\end{aligned}
$$

2. Find the second derivative $F^{\prime \prime}(x)$
a) $F(x)=\int_{0}^{\sin x} \cos \left(t^{2}\right) d t$

Solution

$$
\begin{gathered}
F^{\prime}(x)=\cos \left(\sin ^{2}(x)\right) \cos (x) \\
F^{\prime \prime}(x)=-\sin (x) \cos \left(\sin ^{2}(x)\right)-2 \sin (x) \cos ^{2}(x) \sin \left(\sin ^{2}(x)\right)
\end{gathered}
$$

b) $F(x)=\int_{-x}^{x^{2}} \sqrt{1+t^{2}} d t$

Solution

$$
\begin{gathered}
F(x)=-\int_{c}^{-x} \sqrt{1+t^{2}} d t+\int_{c}^{x^{2}} \sqrt{1+t^{2}} d t \\
F^{\prime}(x)=\sqrt{1+x^{2}}+2 x \sqrt{1+x^{4}} \\
F^{\prime \prime}(x)=\frac{x}{\sqrt{1+x^{2}}}+2 \sqrt{1+x^{4}}+\frac{4 x^{4}}{\sqrt{1+x^{4}}}
\end{gathered}
$$

c) $F(x)=\int_{0}^{x} x e^{t^{2}} d t$

Solution

$$
\begin{gathered}
F(x)=x \int_{0}^{x} e^{t^{2}} d t \\
F^{\prime}(x)=\int_{0}^{x} e^{t^{2}} d t+x e^{x^{2}} \\
F^{\prime \prime}(x)=2 e^{x^{2}}\left(1+x^{2}\right)
\end{gathered}
$$

3. Evaluate $\lim _{x \rightarrow 0}\left(x^{-1} \int_{0}^{x} \sqrt{9+t^{2}} d t\right)$

Solution

$$
\lim _{x \rightarrow 0} \frac{\int_{0}^{x} \sqrt{9+t^{2}}}{x} \quad \stackrel{L^{\prime} H}{=} \quad \lim _{x \rightarrow 0} \sqrt{9+x^{2}}=3
$$

4. Let f be continuous on $[a, b]$. Suppose $\int_{a}^{x} f(t) d t=\int_{x}^{b} f(t) d t$ for all $x \in[a, b]$. Find function f.

Solution

We have $\int_{a}^{x} f(t) d t=-\int_{b}^{x} f(t) d t$ for all $x \in[a, b]$. Therefore, when we differentiate both sides we get

$$
f(x)=-f(x) \Rightarrow f(x)=0
$$

5. Let f be continuous on $[0, \infty)$. Let $f(x) \neq 0$ for $x>0$ and $f^{2}(x)=$ $2 \int_{0}^{x} f(t) d t$. Find function f.

Solution

Differentiate both sides to get

$$
2 f(x) f^{\prime}(x)=2 f(x) \Rightarrow f^{\prime}(x)=1 \Rightarrow f(x)=x+c \text { for some } c
$$

We now solve for c. We have
$f^{2}(x)=x^{2}+2 c x+c^{2}=2 \int_{0}^{x}(t+c) d t=\left[t^{2}+2 c t\right]_{0}^{x}=x^{2}+2 c x \Rightarrow c=0$.
Therefore, $f(x)=x$.
6. Let $I_{n}=\int_{0}^{\infty} x^{-n} d x$. For which real values n the integral I_{n} is convergent?
Hint: consider separately $\int_{0}^{1} x^{-n} d x$ and $\int_{1}^{\infty} x^{-n} d x$

Solution

We have to consider the three cases $n=1, n<1$, and $n>1$.
If $n<1$, then $\int_{1}^{\infty} x^{-n} d x=\lim _{t \rightarrow \infty}\left[x^{1-n} /(1-n)\right]_{1}^{t}=\infty$. Therefore, $\int_{0}^{\infty} x^{-n} d x$ diverges.
If $n>1$, then $\int_{0}^{1} x^{-n} d x=\lim _{c \rightarrow 0^{+}}\left[x^{1-n} /(1-n)\right]_{c}^{1}=\infty$. Therefore, $\int_{0}^{\infty} x^{-n} d x$ diverges.
If $n=1$, then we have $\int_{1}^{\infty} \frac{1}{x} d x=\lim _{t \rightarrow \infty}[\ln x]_{1}^{t}=\infty$.
Therefore, $\int_{0}^{\infty} x^{-n} d x$ diverges for all n
7. Is the following argument correct? Explain. $\int_{-L}^{L} \sin x d x=0$ for any $L \geq 0$. Thus $\int_{-\infty}^{\infty} \sin x d x=0$.

Solution

False. Consider $\int_{0}^{\infty} \sin (x) d x$. Then $\lim _{t \rightarrow \infty} \int_{0}^{t} \sin (x) d x=\lim _{t \rightarrow \infty}[-\cos (x)]_{0}^{t}$, which diverges since $\cos (t)$ oscillates between $-1,1$ as $t \rightarrow \infty$. Therefore, $\int_{-\infty}^{\infty} \sin (x) d x$ diverges.
8. Prove the following statement:

Let f be continuous on $[a, b]$ and g be continuous on $[c, d]$, where $f([a, b]) \subset[c, d]$. Then the composition $g \circ f$ is integrable on $[a, b]$.

Solution

Let $x \in[a, b]$. Then f is continuous at x. Since $f(x) \in[c, d]$ and g is continuous on $[c, d]$, we have g is continuous at $f(x)$. Therefore, $g \circ f$ is continuous at x. Since this is true for all $x \in[a, b], g \circ f$ is continuous for all $x \in[a, b]$, hence it is integrable on $[a, b]$.

9. Extra Points Problem

Prove the following statement:
Let f be integrable on $[a, b]$ and g be continuous on $[c, d]$, where $f([a, b]) \subset$ $[c, d]$. Then the composition $g \circ f$ is integrable on $[a, b]$.
Proof: Given any $\epsilon>0$, let $K=\sup \{|g(t)|: t \in[c, d]\}$ and choose $\epsilon^{\prime}>0$ such that $\epsilon^{\prime}(b-a+2 K)<\epsilon$. Since g is continuous on $[c, d]$, it is uniformly continuous on $[c, d]$. Thus there exists a $\delta>0$ such that $\delta<\epsilon^{\prime}$ and such that $|g(s)-g(t)|<\epsilon^{\prime}$ whenever $|s-t|<\delta$ and $s, t \in[c, d]$. Since f is integrable on $[a, b]$, there exists a partition $P=\left\{x_{0}, x_{2} \ldots, x_{n}\right\}$ of $[a, b]$ such that

$$
U(f, P)-L(f, P)<\delta^{2}
$$

We claim that for this partition we also have

$$
U(g \circ f, P)-L(g \circ f, P)=\sum_{i=1}^{n}\left[M_{i}(g \circ f)-m_{i}(g \circ f)\right] \Delta x_{i}<\epsilon .
$$

To show this, we separate the set of indices of the partition P into two disjoint sets.

$$
A=\left\{i: M_{i}(f)-m_{i}(f)<\delta\right\} \text { and } B=\left\{i: M_{i}(f)-m_{i}(f) \geq \delta\right\} .
$$

Then if $i \in A$ and $x, y \in\left[x_{i-1}, x_{i}\right]$, we have

$$
|f(x)-f(y)| \leq M_{i}(f)-m_{i}(f)<\delta
$$

so that $|g \circ f(x)-g \circ f(y)|<\epsilon^{\prime}$. But then $M_{i}(g \circ f)-m_{i}(g \circ f) \leq \epsilon^{\prime}$. It follows that

$$
\sum_{i \in A}\left[M_{i}(g \circ f)-m_{i}(g \circ f)\right] \Delta x_{i} \leq \epsilon^{\prime} \sum_{i \in A} \Delta x_{i} \leq \epsilon^{\prime}(b-a) .
$$

On the other hand, if $i \in B$, then $\left[M_{i}(f)-m_{i}(f)\right] / \delta \geq 1$, so that

$$
\begin{aligned}
\sum_{i \in B} \Delta x_{i} & \leq \frac{1}{\delta} \sum_{i \in B}\left[M_{i}(f)-m_{i}(f)\right] \Delta x_{i} \\
& \leq \frac{1}{\delta}[U(f, P)-L(f, P)]<\delta<\epsilon^{\prime}
\end{aligned}
$$

Thus since $M_{i}(g \circ f)-m_{i}(g \circ f) \leq 2 K$ for all i, we have

$$
\sum_{i \in B}\left[M_{i}(g \circ f)-m_{i}(g \circ f)\right] \Delta x_{i} \leq 2 K \sum_{i \in B} \Delta x_{i}<2 K \epsilon^{\prime} .
$$

Now when we combine all the indices we obtain

$$
\begin{aligned}
U(g \circ f, P)-L(g \circ f, P) & =\sum_{i \in A}\left[M_{i}(g \circ f)-m_{i}(g \circ f)\right] \Delta x_{i} \\
& +\sum_{i \in B}\left[M_{i}(g \circ f)-m_{i}(g \circ f)\right] \Delta x_{i} \\
& \leq \epsilon^{\prime}(b-a)+2 K \epsilon^{\prime}=\epsilon^{\prime}(b-a+2 K)<\epsilon . \square
\end{aligned}
$$

