1. Let f, g be integrable on $[a, b]$. Introduce notations

$$
\|f\|=\left(\int_{a}^{b} f^{2}(x) d x\right)^{1 / 2}, \quad(f, g)=\int_{a}^{b} f(x) g(x) d x
$$

a) Prove Cauchy-Swartz inequality $|(f, g)| \leq\|f\| \cdot\|g\|$.
b) Show that Cauchy-Swartz inequality implies the triangle inequality

$$
\|f+g\| \leq\|f\|+\|g\| .
$$

2. Find the second derivative $F^{\prime \prime}(x)$
a) $F(x)=\int_{0}^{\sin x} \cos \left(t^{2}\right) d t$
b) $F(x)=\int_{-x}^{x^{2}} \sqrt{1+t^{2}} d t$
c) $F(x)=\int_{0}^{x} x e^{t^{2}} d t$
3. Evaluate $\lim _{x \rightarrow 0}\left(x^{-1} \int_{0}^{x} \sqrt{9+t^{2}} d t\right)$
4. Let f be continuous on $[a, b]$. Suppose $\int_{a}^{x} f(t) d t=\int_{x}^{b} f(t) d t$ for all $x \in[a, b]$. Find function f.
5. Let f be continuous on $[0, \infty)$. Let $f(x) \neq 0$ for $x>0$ and $f^{2}(x)=2 \int_{0}^{x} f(t) d t$. Find function f.
6. Let $I_{n}=\int_{0}^{\infty} x^{-n} d x$. For which real values n the integral I_{n} is convergent?

Hint: consider separately $\int_{0}^{1} x^{-n} d x$ and $\int_{1}^{\infty} x^{-n} d x$
7. Is the following argument correct? Explain.
$\int_{-L}^{L} \sin x d x=0$ for any $L \geq 0$. Thus $\int_{-\infty}^{\infty} \sin x d x=0$.
8. Prove the following statement:

Let f be continuous on $[a, b]$ and g be continuous on $[c, d]$, where $f([a, b]) \subset[c, d]$. Then the composition $g \circ f$ is integrable on $[a, b]$.

9. Extra Points Problem

Prove the following statement:
Let f be integrable on $[a, b]$ and g be continuous on $[c, d]$, where $f([a, b]) \subset[c, d]$. Then the composition $g \circ f$ is integrable on $[a, b]$.

