Assignment \#3

1. Consider piece-wise constant function on $[0,1]$ defined by formula

$$
F(x)=\frac{1}{2^{n}}, \quad \frac{1}{2^{n+1}}<x \leq \frac{1}{2^{n}}, \quad n=0,1,2, \ldots \quad F(0)=0 .
$$

Explain why this function is integrable and find the integral $\int_{0}^{1} F(x) d x$.

Solution

Clearly this function is monotonic, hence it is integrable on $[0,1]$. For $n=0$, we have the area under the interval $[1 / 2,1]=(1)(1 / 2)$. For $n=1$, we have the area under the interval $[1 / 4,1 / 2]=(1 / 2)(1 / 4)$. For $n=2$, we have the area under the interval $[1 / 8,1 / 4]=(1 / 4)(1 / 8)$. Continuing, we have

$$
\int_{0}^{1} F(x) d x=\frac{1}{2} \sum_{i=0}^{\infty}\left(\frac{1}{4}\right)^{i}=\frac{1}{2}\left(\frac{1}{1-1 / 4}\right)=\frac{2}{3} .
$$

2. Show that if $f(x) \leq g(x)$ for all $x \in[a, b]$, and are integrable functions, then $\int_{a}^{b} f(x) d x \leq \int_{a}^{b} g(x) d x$.

Solution

Consider $h(x)=g(x)-f(x)$. Observe that $h(x) \geq 0$ and it is integrable for all $x \in[a, b]$. Then using the definition of the Riemann integral show that $\int_{a}^{b} h(x) d x$ can't be negative and thus $\int_{a}^{b} h(x) d x \geq 0$. It implies by linearity that $\int_{a}^{b} f(x) d x \leq \int_{a}^{b} g(x) d x$.
3. Let f be integrable on $[a, b]$ and suppose that $m \leq f(x) \leq M$ for all $x \in[a, b]$. Show that $m(b-a) \leq \int_{a}^{b} f d x \leq M(b-a)$.

Solution

From question $\# 2$, we have that $\int_{a}^{b} m \leq \int_{a}^{b} f(x) d x \leq \int_{a}^{b} M$. Therefore

$$
m(b-a) \leq \int_{a}^{b} f(x) d x \leq M(b-a)
$$

4. Prove the mean value theorem for integrals: It f is continuous on $[a, b]$ then there exists $c \in[a, b]$ such that

$$
f(c)=\frac{1}{b-a} \int_{a}^{b} f d x
$$

Solution

Since f is continuous on $[a, b]$, it is bounded on $[a, b]$. Let $M=\max \{f(x) \mid x \in[a, b]\}$ and $m=\min \{f(x) \mid x \in[a, b]\}$. Then we have $m \leq f(x) \leq M$. From question \#3, we have $m \leq \frac{1}{b-a} \int_{a}^{b} f d x \leq M$. Therefore, by the Intermediate Value Theorem, there must exist $c \in[a, b]$ such that $f(c)=\frac{1}{b-a} \int_{a}^{b} f d x$.
5. Let f and g be continuous on $[a, b]$, and suppose that $\int_{a}^{b} f d x=\int_{a}^{b} g d x$. Prove that there exists a point $c \in[a, b]$ such that $f(c)=g(c)$.

Solution

Let $h(x)=f(x)-g(x)$ for all $x \in[a, b]$. So we have $h(x)=0$ for all $x \in[a, b]$. Thus, $\frac{1}{b-a} \int_{a}^{b} f d x=0$. Therefore, from question \#4, there exists $c \in[a, b]$ such that $f(c)=\frac{1}{b-a} \int_{a}^{b} f d x=0$, i.e. there exists $c \in[a, b]$ such that $f(c)-g(c)=0 \Rightarrow f(c)=g(c)$.
6. Let f be integrable function on $[a, b]$ and let k be any real number. Show that $k f$ is also integrable and that $\int_{a}^{b} k f(x) d x=k \int_{a}^{b} f(x) d x$. Hint: consider cases $k=0, k>0, k<0$.

Solution

We consider two cases. Let P be a partition of $[a, b]$. For $k \geq 0$, we have

$$
U(k f)=k U(f)=k L(f)=L(k f) .
$$

Therefore, $k f$ is integrable. Also

$$
\int_{a}^{b} k f(x) d x=U(k f)=k U(f)=k \int_{a}^{b} f(x) d x .
$$

For $k<0$, we have

$$
U(k f)=k L(f)=k U(f)=L(k f) .
$$

Therefore, $k f$ is integrable. Also,

$$
\int_{a}^{b} k f(x) d x=U(k f)=k L(f)=k \int_{a}^{b} f(x) d x
$$

7. Show if $a<c<b$ then for any integrable function f

$$
\int_{a}^{b} f(x) d x=\int_{a}^{c} f(x) d x+\int_{c}^{b} f(x) d x
$$

Solution

Since f is integrable on $[a, b]$, there exists partition P of $[a, b]$ such that $U(f, P)-L(f, P)<\epsilon$ for all $\epsilon>0$. Let P_{1} be points of P which lie to the left of, and include, c. Let P_{2} be points of P which lie to the right of, and include, c. Then $P=P_{1} \cup P_{2}$. Now, $U\left(f, P_{1}\right)-L\left(f, P_{1}\right) \leq$ $U(f, P)-L(f, P)<\epsilon$. Hence, f is integrable on $[a, c]$. Similarly, f is integrable on $[c, b]$.
Since $U(f, P)-L(f, P)=U\left(f, P_{1}\right)+U\left(f, P_{2}\right)-L\left(f, P_{1}\right)-L\left(f, P_{2}\right)<\epsilon$
we have

$$
\begin{aligned}
\int_{a}^{b} f \leq U(f, P) & =U\left(f, P_{1}\right)+U\left(f, P_{2}\right) \\
& <L\left(f, P_{1}\right)+L\left(f, P_{2}\right)+\epsilon \leq \int_{a}^{c} f+\int_{c}^{b} f-\epsilon
\end{aligned}
$$

and also

$$
\begin{aligned}
\int_{a}^{b} f \geq L(f, P) & =L\left(f, P_{1}\right)+L\left(f, P_{2}\right) \\
& >U\left(f, P_{1}\right)+U\left(f, P_{2}\right)-\epsilon \leq \int_{a}^{c} f+\int_{c}^{b} f+\epsilon
\end{aligned}
$$

Since this is true for all ϵ, we have $\int_{a}^{b} f=\int_{a}^{c} f+\int_{c}^{b} f$.
8. Is it true or false that if $|f|$ is integrable on $[a, b]$ then f must be integrable on $[a, b]$?

Solution

False. Consider the function

$$
f(x)= \begin{cases}1, & \text { if } x \text { is rational } \\ -1, & \text { if } x \text { is irrational }\end{cases}
$$

9. Extra Points Problem

a) Consider function $f(x)=\sin (1 / x)$ for $0<x \leq 1$ and $f(0)=0$. Is that function integrable on $[0,1]$? Explain.
b) Let f be bounded on $[a, b]$ and integrable on $[c, b]$ for any $c \in(a, b)$. Is such a function integrable on $[a, b]$?

Solutions

(a) f is integrable on $[0,1]$ since it is continuous everywhere except at point $x=0$ and bounded on $[0,1]$.
(b) Yes.

