1. Consider piece-wise constant function on $[0,1]$ defined by formula

$$
F(x)=\frac{1}{2^{n}}, \quad \frac{1}{2^{n+1}}<x \leq \frac{1}{2^{n}}, \quad n=0,1,2, \ldots \quad F(0)=0 .
$$

Explain why this function is integrable and find the integral $\int_{0}^{1} F(x) d x$.
2. Show that if $f(x) \leq g(x)$ for all $x \in[a, b]$, and are integrable functions, then $\int_{a}^{b} f(x) d x \leq \int_{a}^{b} g(x) d x$.
3. Let f be integrable on $[a, b]$ and suppose that $m \leq f(x) \leq M$ for all $x \in[a, b]$. Show that $m(b-a) \leq \int_{a}^{b} f d x \leq M(b-a)$.
4. Prove the mean value theorem for integrals: It f is continuous on $[a, b]$ then there exists $c \in[a, b]$ such that

$$
f(c)=\frac{1}{b-a} \int_{a}^{b} f d x
$$

5. Let f and g be continuous on $[a, b]$, and suppose that $\int_{a}^{b} f d x=\int_{a}^{b} g d x$. Prove that there exists a point $c \in[a, b]$ such that $f(c)=g(c)$.
6. Let f be integrable function on $[a, b]$ and let k be any real number. Show that $k f$ is also integrable and that $\int_{a}^{b} k f(x) d x=k \int_{a}^{b} f(x) d x$.
Hint: consider cases $k=0, k>0, k<0$.
7. Show if $a<c<b$ then for any integrable function f

$$
\int_{a}^{b} f(x) d x=\int_{a}^{c} f(x) d x+\int_{c}^{b} f(x) d x
$$

8. Is it true or false that $i t|f|$ is integrable on $[a, b]$ then f must be integrable on $[a, b]$?

9. Extra Points Problem

a) Consider function $f(x)=\sin (1 / x)$ for $0<x \leq 1$ and $f(0)=0$. Is that function integrable on $[0,1]$? Explain.
b) Let f be bounded on $[a, b]$ and integrable on $[c, b]$ for any $c \in(a, b)$. Is such a function integrable on $[a, b]$?

