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Some numbers about Euler

76 years

13 children

886 articles
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Introduction

Some of Euler’s Topics

Here are some simple, but important, results of Euler:

Logarithms: the formula

loga(b) =
logc(b)

logc(a)
=

ln(b)

ln(a)

The symbol i to denote
√
−1

The base of the natural number, 2.719281828459 . . ., and
the symbol e to denote 2.719281828459 . . .

Euler’s Identity:
eiπ + 1 = 0

(Note that this last formula contains e, i, π, 0, and 1, which
are five of the most important symbols in mathematics.)
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Timeline

1707: Euler was born.
1720: University of Basel
1723: Master’s Degree
1726: First Paper — Analysis of the placement of masts on
a sailing ship.
1727: Moves to St. Petersburg, Russia
1730: Professor of Physics
1733: Chair in Pure Mathematics

Duties: Scientific consultant to the government,
prepares maps, advises Russian Navy, tests designs for
engines
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Timeline

1707: Euler was born.
1720: University of Basel
1723: Master’s Degree
1726: First Paper — Analysis of the placement of masts on
a sailing ship.
1727: Moves to St. Petersburg, Russia
1730: Professor of Physics
1733: Chair in Pure Mathematics
1734: Marries Katharina Gsell
1736: First book — Mechanica
1741: Moves to Berlin
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Timeline

1748: Introductio in Analysin
1755: Books on Differential Calculus
1755: Letters to Princess
1766: Returns to St. Petersburg
1768: Book on Integral Calculus
1772: Treatise on the motion of the moon
1773: Katharina died
1776: Remarries (his wife’s sister)
1783: Died
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Euler’s Formula for Polyhedra

While Euler was studying polyhedra, he noticed a
relationship between the number of edges, vertices and
faces of a polyhedra.

Let V be the number of vertices.

Let E be the number of edges.

Let F be the number of faces.

Then we have
V − E + F = 2.
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Euler’s Formula for Polyhedra

Auxilary Problem: Suppose we have n points inside a
triangle that are connected to form triangles (triangulation).
How many triangles are there?
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Euler’s Formula for Polyhedra

Suppose there are N interior triangles. We will find N .

a

Leonhard Euler Tercentennary — 2007 – p. 30/47



Euler’s Formula for Polyhedra

Suppose there are N interior triangles. We will find N .

Sum the angles of the interior triangles in two ways.

a

Leonhard Euler Tercentennary — 2007 – p. 30/47



Euler’s Formula for Polyhedra

Suppose there are N interior triangles. We will find N .

Sum the angles of the interior triangles in two ways.

First way: N triangles; sum of angles isa Nπ.
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◦.

Leonhard Euler Tercentennary — 2007 – p. 30/47



Euler’s Formula for Polyhedra

Suppose there are N interior triangles. We will find N .

Sum the angles of the interior triangles in two ways.

First way: N triangles; sum of angles isa Nπ.
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aRemember that π radians is the same as 180
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Euler’s Formula for Polyhedra

Suppose there are N interior triangles. We will find N .

Sum the angles of the interior triangles in two ways.

First way: N triangles; sum of angles isa Nπ.

Second way: Interior points + exterior triangle; sum of
angles is 2nπ

aRemember that π radians is the same as 180
◦.
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Euler’s Formula for Polyhedra

Suppose there are N interior triangles. We will find N .

Sum the angles of the interior triangles in two ways.

First way: N triangles; sum of angles isa Nπ.

Second way: Interior points + exterior triangle; sum of
angles is 2nπ + π

aRemember that π radians is the same as 180
◦.
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Euler’s Formula for Polyhedra

Suppose there are N interior triangles. We will find N .

Sum the angles of the interior triangles in two ways.

First way: N triangles; sum of angles isa Nπ.

Second way: Interior points + exterior triangle; sum of
angles is 2nπ + π = (2n + 1)π.

aRemember that π radians is the same as 180
◦.
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Euler’s Formula for Polyhedra

Suppose there are N interior triangles. We will find N .

Sum the angles of the interior triangles in two ways.

First way: N triangles; sum of angles isa Nπ.

Second way: Interior points + exterior triangle; sum of
angles is 2nπ + π = (2n + 1)π.

Hence, we have Nπ = (2n + 1)π, or

N = 2n + 1.

aRemember that π radians is the same as 180
◦.
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Euler’s Formula for Polyhedra

Suppose there are N interior triangles. We will find N .

Sum the angles of the interior triangles in two ways.

First way: N triangles; sum of angles isa Nπ.

Second way: Interior points + exterior triangle; sum of
angles is 2nπ + π = (2n + 1)π.

Hence, we have Nπ = (2n + 1)π, or

N = 2n + 1.

Thus, if we have n interior points, we will have 2n + 1
triangles.

aRemember that π radians is the same as 180
◦.
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Euler’s Formula for Polyhedra

Now, suppose we have a polyhedra that can be projected
onto the plane as in the problem above. Then we have
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Now, suppose we have a polyhedra that can be projected
onto the plane as in the problem above. Then we have

V = 3 + n

F = N + 1 = 2(n + 1)

E =
3F

2
= 3(n + 1)
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V = 3 + n
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2
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Euler’s Formula for Polyhedra

Now, suppose we have a polyhedra that can be projected
onto the plane as in the problem above. Then we have

V = 3 + n

F = N + 1 = 2(n + 1)

E =
3F

2
= 3(n + 1)

Then we see that

V − E + F = (3 + n)
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Euler’s Formula for Polyhedra

Now, suppose we have a polyhedra that can be projected
onto the plane as in the problem above. Then we have

V = 3 + n

F = N + 1 = 2(n + 1)

E =
3F

2
= 3(n + 1)

Then we see that

V − E + F = (3 + n) − (3n + 3)
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Euler’s Formula for Polyhedra

Now, suppose we have a polyhedra that can be projected
onto the plane as in the problem above. Then we have

V = 3 + n

F = N + 1 = 2(n + 1)

E =
3F

2
= 3(n + 1)

Then we see that

V − E + F = (3 + n) − (3n + 3) + (2n + 2)
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Euler’s Formula for Polyhedra

Now, suppose we have a polyhedra that can be projected
onto the plane as in the problem above. Then we have

V = 3 + n

F = N + 1 = 2(n + 1)

E =
3F

2
= 3(n + 1)

Then we see that

V − E + F = (3 + n) − (3n + 3) + (2n + 2) = 2
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Euler’s Formula for Polyhedra

Now, suppose we have a polyhedra that can be projected
onto the plane as in the problem above. Then we have

V = 3 + n

F = N + 1 = 2(n + 1)

E =
3F

2
= 3(n + 1)

Then we see that

V − E + F = (3 + n) − (3n + 3) + (2n + 2) = 2,

which is Euler’s formula!
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Euler’s Formula for Polyhedra

We have proven Euler’s Formula for polyhedra with only
triangular faces. We can prove it in general, but we must
recall a useful fact.
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Euler’s Formula for Polyhedra

We have proven Euler’s Formula for polyhedra with only
triangular faces. We can prove it in general, but we must
recall a useful fact.
Theorem: For n greater than 3, the sum of the interior angles of a
polygon with n sides will be

(n − 2)π.
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Euler’s Formula for Polyhedra

We have proven Euler’s Formula for polyhedra with only
triangular faces. We can prove it in general, but we must
recall a useful fact.
Theorem: For n greater than 3, the sum of the interior angles of a
polygon with n sides will be

(n − 2)π.

For example, for a triangle, n = 3, and the sum of the angles is
(3 − 1)π = π.
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Euler’s Formula for Polyhedra

We have proven Euler’s Formula for polyhedra with only
triangular faces. We can prove it in general, but we must
recall a useful fact.
Theorem: For n greater than 3, the sum of the interior angles of a
polygon with n sides will be

(n − 2)π.

For example, for a triangle, n = 3, and the sum of the angles is
(3 − 1)π = π.
For a square, n = 4, and the sum of the angles is (4 − 2)π = 2π.
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Euler’s Formula for Polyhedra

Now assume that we can project any polyhedron onto the
plane so that none of the projections of the edges cross.
We will prove Euler’s Formula for the general case.
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Euler’s Formula for Polyhedra

Now assume that we can project any polyhedron onto the
plane so that none of the projections of the edges cross.
We will prove Euler’s Formula for the general case.

Let the exterior polygon have n0 edges.
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Euler’s Formula for Polyhedra

Now assume that we can project any polyhedron onto the
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We will prove Euler’s Formula for the general case.

Let the exterior polygon have n0 edges.

Let there be m polygons on the projection.

Leonhard Euler Tercentennary — 2007 – p. 33/47



Euler’s Formula for Polyhedra

Now assume that we can project any polyhedron onto the
plane so that none of the projections of the edges cross.
We will prove Euler’s Formula for the general case.

Let the exterior polygon have n0 edges.

Let there be m polygons on the projection. (This means
that there were m + 1 faces on the polyhedron, where
the extra face is the exterior polygon in the projection.)
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Euler’s Formula for Polyhedra

Now assume that we can project any polyhedron onto the
plane so that none of the projections of the edges cross.
We will prove Euler’s Formula for the general case.

Let the exterior polygon have n0 edges.

Let there be m polygons on the projection.

Let ni be the number of edges of the ith polygon.
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Euler’s Formula for Polyhedra

Now assume that we can project any polyhedron onto the
plane so that none of the projections of the edges cross.
We will prove Euler’s Formula for the general case.

Let the exterior polygon have n0 edges.

Let there be m polygons on the projection.

Let ni be the number of edges of the ith polygon.

Then we have

n1 + n2 + . . . + nm
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Euler’s Formula for Polyhedra

Now assume that we can project any polyhedron onto the
plane so that none of the projections of the edges cross.
We will prove Euler’s Formula for the general case.

Let the exterior polygon have n0 edges.

Let there be m polygons on the projection.

Let ni be the number of edges of the ith polygon.

Then we have

n1 + n2 + . . . + nm + n0
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Euler’s Formula for Polyhedra

Now assume that we can project any polyhedron onto the
plane so that none of the projections of the edges cross.
We will prove Euler’s Formula for the general case.

Let the exterior polygon have n0 edges.

Let there be m polygons on the projection.

Let ni be the number of edges of the ith polygon.

Then we have

n1 + n2 + . . . + nm + n0 = 2E.
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Euler’s Formula for Polyhedra

Again, we sum the interior angles of interior polygons of the
projection in two ways:
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Euler’s Formula for Polyhedra

Again, we sum the interior angles of interior polygons of the
projection in two ways:

Interior polygons:
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Euler’s Formula for Polyhedra

Again, we sum the interior angles of interior polygons of the
projection in two ways:

Interior polygons:

(n1 − 2)π + (n2 − 2)π + . . . + (nm − 2)π
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Euler’s Formula for Polyhedra

Again, we sum the interior angles of interior polygons of the
projection in two ways:

Interior polygons:

(n1 − 2)π + (n2 − 2)π + . . . + (nm − 2)π

= (n1 + n2 + . . . + nm)π −
m

︷ ︸︸ ︷

(2 + 2 + . . . + 2) π
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Euler’s Formula for Polyhedra

Again, we sum the interior angles of interior polygons of the
projection in two ways:

Interior polygons:

(n1 − 2)π + (n2 − 2)π + . . . + (nm − 2)π

= (n1 + n2 + . . . + nm)π −
m

︷ ︸︸ ︷

(2 + 2 + . . . + 2) π

+(n0 − 2)π − (n0 − 2)π
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Euler’s Formula for Polyhedra

Again, we sum the interior angles of interior polygons of the
projection in two ways:

Interior polygons:

(n1 − 2)π + (n2 − 2)π + . . . + (nm − 2)π

= (n1 + n2 + . . . + nm)π −
m

︷ ︸︸ ︷

(2 + 2 + . . . + 2) π

+(n0 − 2)π − (n0 − 2)π

= (n1 + n2 + . . . + nm + n0)π − 2(m + 1)π − (n0 − 2)π
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Again, we sum the interior angles of interior polygons of the
projection in two ways:

Interior polygons:

2Eπ − 2Fπ − (n0 − 2)π

Interior points + exterior polygon:

(V − n0)2π
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Euler’s Formula for Polyhedra

Again, we sum the interior angles of interior polygons of the
projection in two ways:

Interior polygons:

2Eπ − 2Fπ − (n0 − 2)π

Interior points + exterior polygon:

(V − n0)2π + (n0 − 2)π
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Euler’s Formula for Polyhedra

Again, we sum the interior angles of interior polygons of the
projection in two ways:

Interior polygons:
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Interior points + exterior polygon:

(V − n0)2π + (n0 − 2)π

= 2V π − n0π − 2π
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Euler’s Formula for Polyhedra

Again, we sum the interior angles of interior polygons of the
projection in two ways:

Interior polygons:

2Eπ − 2Fπ − (n0 − 2)π

Interior points + exterior polygon:

(V − n0)2π + (n0 − 2)π

= 2V π − n0π − 2π + 2π − 2π
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Euler’s Formula for Polyhedra

Again, we sum the interior angles of interior polygons of the
projection in two ways:

Interior polygons:

2Eπ − 2Fπ − (n0 − 2)π

Interior points + exterior polygon:

(V − n0)2π + (n0 − 2)π

= 2V π − n0π − 2π + 2π − 2π

= 2V π − (n0 − 2)π − 4π
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Again, we sum the interior angles of interior polygons of the
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Euler’s Formula for Polyhedra

Again, we sum the interior angles of interior polygons of the
projection in two ways:

Interior polygons:

2Eπ − 2Fπ − (n0 − 2)π

Interior points + exterior polygon:

2V π − (n0 − 2)π − 4π
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Euler’s Formula for Polyhedra

Again, we sum the interior angles of interior polygons of the
projection in two ways:

Interior polygons:

2Eπ − 2Fπ − (n0 − 2)π

Interior points + exterior polygon:

2V π − (n0 − 2)π − 4π

So

2Eπ − 2Fπ − (n0 − 2)π = 2V π − (n0 − 2)π − 4π

⇒ E − V + F = 2.
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The Basel Problem

Here we attempt to solve the problem of finding the sum

1 +
1

4
+

1

9
+ . . . +

1

n2
+ . . . .
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This was known as the Basel problem — mathematicians
before Euler had tremendous difficulties trying to solve it. It
was introduced by the Italian Pietro Mengoli in 1644, and
Jacob Bernoulli popularized it in 1689. The Bernoulli family
spend so much time solving it while residing in Basel,
Switzerland, that it became known as the Basel problem.
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The Basel Problem

Here we attempt to solve the problem of finding the sum

1 +
1

4
+

1

9
+ . . . +

1

n2
+ . . . .

This was known as the Basel problem — mathematicians
before Euler had tremendous difficulties trying to solve it. It
was introduced by the Italian Pietro Mengoli in 1644, and
Jacob Bernoulli popularized it in 1689. The Bernoulli family
spend so much time solving it while residing in Basel,
Switzerland, that it became known as the Basel problem.
When Euler solved the problem in 1735, the exact value of
the sum was a genuine surprise.
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The Basel Problem

First we give a little explanation of the term infinite series. If
we ignore all the terms after the N th term, we obtain

1 +
1

4
+

1

9
+ . . . +

1

N2
.
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First we give a little explanation of the term infinite series. If
we ignore all the terms after the N th term, we obtain

1 +
1

4
+

1

9
+ . . . +

1

N2
.

We call this a partial sum.
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The Basel Problem

First we give a little explanation of the term infinite series. If
we ignore all the terms after the N th term, we obtain

1 +
1

4
+

1

9
+ . . . +

1

N2
.

We call this a partial sum. If the partial sums tend to a
certain value S as N becomes large, then we say the
infinite series has a value S.
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The Basel Problem

First, we note that partial sums don’t always tend to a
certain number.
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series

1 + 1 + 1 + . . .
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First, we note that partial sums don’t always tend to a
certain number. For example, if we consider the simple
series

1 + 1 + 1 + . . . ,

its partial sums are

N
︷ ︸︸ ︷

1 + 1 + . . . + 1 = N.
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The Basel Problem

First, we note that partial sums don’t always tend to a
certain number. For example, if we consider the simple
series

1 + 1 + 1 + . . . ,

its partial sums are

N
︷ ︸︸ ︷

1 + 1 + . . . + 1 = N.

It is easy to see that as N grows, this partial sums go to
infinity.

Leonhard Euler Tercentennary — 2007 – p. 39/47



The Basel Problem

But if we look at the graph of the partial sums of our series,
we obtain the following picture.

10 20 30 40 50

1.3

1.4

1.5

1.6
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The Basel Problem

But if we look at the graph of the partial sums of our series,
we obtain the following picture.

10 20 30 40 50

1.3

1.4

1.5

1.6

From this picture, we suspect that the partial sums tend to
some number which is a little more than 1.6.
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The Basel Problem

Euler, in 1735, solved the Basel problem by using some
ingenious methods.
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Euler, in 1735, solved the Basel problem by using some
ingenious methods. He applied techniques used in finite
cases to our infinite series. We will introduce the idea in
terms of a quadratic.

Consider a quadratic function f(x) = x2 + bx + c with
roots p and q.
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The Basel Problem

Euler, in 1735, solved the Basel problem by using some
ingenious methods. He applied techniques used in finite
cases to our infinite series. We will introduce the idea in
terms of a quadratic.

Consider a quadratic function f(x) = x2 + bx + c with
roots p and q.

Then we can write f(x) = (x − p)(x − q).
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Euler, in 1735, solved the Basel problem by using some
ingenious methods. He applied techniques used in finite
cases to our infinite series. We will introduce the idea in
terms of a quadratic.

Consider a quadratic function f(x) = x2 + bx + c with
roots p and q.

Then we can write f(x) = (x − p)(x − q).

Expand f(x):

f(x) = x2 − (p + q)x + pq.
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The Basel Problem

Euler, in 1735, solved the Basel problem by using some
ingenious methods. He applied techniques used in finite
cases to our infinite series. We will introduce the idea in
terms of a quadratic.

Consider a quadratic function f(x) = x2 + bx + c with
roots p and q.

Then we can write f(x) = (x − p)(x − q).

Expand f(x):

f(x) = x2 − (p + q)x + pq.

Then (p + q) = −b.
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The Basel Problem

Euler used the same idea as we used for the quadratic —
for an infinite polynomial!
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sin(x)

x
.
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Any root of f has to be a root of the numerator, sin(x).
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The Basel Problem

Euler used the same idea as we used for the quadratic —
for an infinite polynomial! Consider the function

f(x) =
sin(x)

x
.

Any root of f has to be a root of the numerator, sin(x).
The roots of sin(x) are

0,±π,±2π, . . . ,±nπ, . . . .

Near x = 0, sin(x) ≈ x, so f(x) ≈ 1, so x = 0 is not a
root.
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The Basel Problem

Euler used the same idea as we used for the quadratic —
for an infinite polynomial! Consider the function

f(x) =
sin(x)

x
.

Any root of f has to be a root of the numerator, sin(x).
The roots of sin(x) are

0,±π,±2π, . . . ,±nπ, . . . .

Near x = 0, sin(x) ≈ x, so f(x) ≈ 1, so x = 0 is not a
root.

Therefore, the roots of f(x) are

±π,±2π, . . . ,±nπ, . . . .
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The Basel Problem

Since the roots of f(x) are

±π,±2π, . . . ,±nπ, . . . ,
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it is reasonable to assume that
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The Basel Problem

Since the roots of f(x) are

±π,±2π, . . . ,±nπ, . . . ,

it is reasonable to assume that

f(x) =
(

1 −
x

π

) (

1 +
x

π

) (

1 −
x

2π

)(

1 +
x

2π

)

· · ·

(Instead of writing the factor (nπ − x), we write the factor
(1 − x

nπ
), which corresponds to the same root, nπ.)

Leonhard Euler Tercentennary — 2007 – p. 43/47



The Basel Problem
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Since the roots of f(x) are

±π,±2π, . . . ,±nπ, . . . ,

it is reasonable to assume that
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)(

1 +
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· · ·
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1 −
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)
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Since the roots of f(x) are

±π,±2π, . . . ,±nπ, . . . ,

it is reasonable to assume that

f(x) =

︷ ︸︸ ︷(

1 −
x

π

) (

1 +
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π
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) (
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Since the roots of f(x) are

±π,±2π, . . . ,±nπ, . . . ,

it is reasonable to assume that

f(x) =

︷ ︸︸ ︷(

1 −
x

π

) (

1 +
x

π

) ︷ ︸︸ ︷(

1 −
x

2π

) (

1 +
x

2π

)
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Since the roots of f(x) are

±π,±2π, . . . ,±nπ, . . . ,

it is reasonable to assume that

f(x) =

︷ ︸︸ ︷(

1 −
x

π

) (

1 +
x

π

) ︷ ︸︸ ︷(

1 −
x

2π

) (

1 +
x

2π

)

· · ·

=

(

1 −
x2

π2

) (

1 −
x2

4π2

)(

1 −
x2

9π2

)(

1 −
x2

16π2

)

· · ·

Now if we expand f(x) as if it were a polynomial, we can
see that the coefficient of x2 would be

−
1

π2
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Now if we expand f(x) as if it were a polynomial, we can
see that the coefficient of x2 would be

−
1

π2
−

1

4π2
−

1

9π2
− . . . .
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The Basel Problem

Now Euler also knew (as you will in a few years!) that we
can also express the function f as

f(x) =
sin(x)

x
= 1 −

x2

3!
+

x4

5!
− . . . +

(−1)nx2n

(2n + 1)!
+ . . .
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Therefore we have the infinite product from the last slide
must be equal to the infinite sum above.
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can also express the function f as
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= 1 −
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Therefore we have the infinite product from the last slide
must be equal to the infinite sum above.
The coefficient of x2 in the infinite sum is −1

6
.
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The Basel Problem

Now Euler also knew (as you will in a few years!) that we
can also express the function f as

f(x) =
sin(x)

x
= 1 −

x2

3!
+

x4

5!
− . . . +

(−1)nx2n

(2n + 1)!
+ . . .

Therefore we have the infinite product from the last slide
must be equal to the infinite sum above.
The coefficient of x2 in the infinite sum is −1

6
. Equating the

coefficients of x2 gives

− 1

π2 −
1

4π2
−

1

9π2
− . . . = −

1

6
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The Basel Problem

Now Euler also knew (as you will in a few years!) that we
can also express the function f as

f(x) =
sin(x)

x
= 1 −

x2

3!
+

x4

5!
− . . . +

(−1)nx2n

(2n + 1)!
+ . . .

Therefore we have the infinite product from the last slide
must be equal to the infinite sum above.
The coefficient of x2 in the infinite sum is −1

6
. Equating the

coefficients of x2 gives

− 1

π2 −
1

4π2
−

1

9π2
− . . . = −

1

6

⇒ 1 − 1

4
−

1

9
− . . . =

π2

6
.
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The Basel Problem

It is interesting to note that Euler was not yet aware of the
symbol π for the number 3.14159265. . ., and stated the
result as follows:
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“I have discovered for the sum of six of this series to
be equal to the square of the circumference of a
circle whose diameter is 1.”
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The Basel Problem

It is interesting to note that Euler was not yet aware of the
symbol π for the number 3.14159265. . ., and stated the
result as follows:

“I have discovered for the sum of six of this series to
be equal to the square of the circumference of a
circle whose diameter is 1.”

The series he is talking about is the series

1 +
1

4
+

1

9
+ . . . ,

and the circumference of a circle whose diameter is 1 is, of
course, the number π!
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Conclusion
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