Leonhard Euler Tercentennary 2007

Dr. Margo Kondratieva and Andrew Stewart

Overview

Overview

- Introduction

Overview

- Introduction
- Timeline

Overview

- Introduction
- Timeline
- Polyhedral Problem

Overview

- Introduction
- Timeline
- Polyhedral Problem
- Basel Problem

Overview

- Introduction
- Timeline
- Polyhedral Problem
- Basel Problem
- Conclusion

Introduction

Some numbers about Euler

Introduction

Some numbers about Euler

- 76 years

Introduction

Some numbers about Euler

- 76 years
- 13 children

Introduction

Some numbers about Euler

- 76 years
- 13 children
- 886 articles

Introduction

Some numbers about Euler

- 76 years
- 13 children
- 886 articles
- $72 \cdot 600$

Introduction

Some numbers about Euler

- 76 years
- 13 children
- 886 articles
- $72 \cdot 600=43200$ pages

Introduction

Opera Omnia

Introduction

Opera Omnia

- Pure Math (29 volumes)

Introduction

Opera Omnia

- Pure Math (29 volumes)
- Mechanics and Astronomy (31 volumes)

Introduction

Opera Omnia

- Pure Math (29 volumes)
- Mechanics and Astronomy (31 volumes)
- Physics and Miscellaneous (12 volumes)

Introduction

In Math

Introduction

In Math

- Analysis: 60\%

Introduction

In Math

- Analysis: 60\%
- Geometry: 17\%

Introduction

In Math

- Analysis: 60\%
- Geometry: 17\%
- Number Theory: 13%

Introduction

In Math

- Analysis: 60\%
- Geometry: 17\%
- Number Theory: 13%
- Algebra: 7\%

Introduction

In Math

- Analysis: 60\%
- Geometry: 17\%
- Number Theory: 13%
- Algebra: 7\%
- Other: 3\%

Introduction

Some of Euler's Topics

Here are some simple, but important, results of Euler:

Introduction

Some of Euler's Topics

Here are some simple, but important, results of Euler:

- Logarithms: the formula

$$
\log _{a}(b)=\frac{\log _{c}(b)}{\log _{c}(a)}
$$

Introduction

Some of Euler's Topics

Here are some simple, but important, results of Euler:

- Logarithms: the formula

$$
\log _{a}(b)=\frac{\log _{c}(b)}{\log _{c}(a)}=\frac{\ln (b)}{\ln (a)}
$$

Introduction

Some of Euler's Topics

Here are some simple, but important, results of Euler:

- Logarithms: the formula

$$
\log _{a}(b)=\frac{\log _{c}(b)}{\log _{c}(a)}=\frac{\ln (b)}{\ln (a)}
$$

- The symbol i to denote $\sqrt{-1}$

Introduction

Some of Euler's Topics

Here are some simple, but important, results of Euler:

- Logarithms: the formula

$$
\log _{a}(b)=\frac{\log _{c}(b)}{\log _{c}(a)}=\frac{\ln (b)}{\ln (a)}
$$

- The symbol i to denote $\sqrt{-1}$
- The base of the natural number, $2.719281828459 \ldots$, and the symbol e to denote $2.719281828459 \ldots$

Introduction

Some of Euler's Topics

Here are some simple, but important, results of Euler:

- Logarithms: the formula

$$
\log _{a}(b)=\frac{\log _{c}(b)}{\log _{c}(a)}=\frac{\ln (b)}{\ln (a)}
$$

- The symbol i to denote $\sqrt{-1}$
- The base of the natural number, $2.719281828459 \ldots$, and the symbol e to denote $2.719281828459 \ldots$
- Euler's Identity:

$$
e^{i \pi}+1=0
$$

Introduction

Some of Euler's Topics

Here are some simple, but important, results of Euler:

- Logarithms: the formula

$$
\log _{a}(b)=\frac{\log _{c}(b)}{\log _{c}(a)}=\frac{\ln (b)}{\ln (a)}
$$

- The symbol i to denote $\sqrt{-1}$
- The base of the natural number, $2.719281828459 \ldots$, and the symbol e to denote $2.719281828459 \ldots$
- Euler's Identity:

$$
e^{i \pi}+1=0
$$

(Note that this last formula contains $e, i, \pi, 0$, and 1 , which are five of the most important symbols in mathematics.)

Timeline

1707: Euler was born.

Timeline

1707: Euler was born. 1720: University of Basel

Timeline

1707: Euler was born.
1720: University of Basel
1723: Master's Degree (talk in Latin about the comparison of philosophies of DeCartes and Newton)

Timeline

1707: Euler was born.
1720: University of Basel
1723: Master's Degree (talk in Latin about the comparison of philosophies of DeCartes and Newton)

Timeline

1707: Euler was born. 1720: University of Basel
1723: Master's Degree

Timeline

1707: Euler was born.
1720: University of Basel
1723: Master's Degree
1726: First Paper - Analysis of the placement of masts on a sailing ship.

Timeline

1707: Euler was born.
1720: University of Basel
1723: Master's Degree
1726: First Paper - Analysis of the placement of masts on a sailing ship. (Receives an award from Paris Academy of Science)

Timeline

1707: Euler was born.
1720: University of Basel
1723: Master's Degree
1726: First Paper - Analysis of the placement of masts on a sailing ship.
1727: Moves to St. Petersburg, Russia

Timeline

1707: Euler was born.
1720: University of Basel
1723: Master's Degree
1726: First Paper - Analysis of the placement of masts on a sailing ship.
1727: Moves to St. Petersburg, Russia
1730: Professor of Physics

Timeline

1707: Euler was born.
1720: University of Basel
1723: Master's Degree
1726: First Paper - Analysis of the placement of masts on a sailing ship.
1727: Moves to St. Petersburg, Russia
1730: Professor of Physics
1733: Chair in Pure Mathematics

Timeline

1707: Euler was born.
1720: University of Basel
1723: Master's Degree
1726: First Paper - Analysis of the placement of masts on a sailing ship.
1727: Moves to St. Petersburg, Russia
1730: Professor of Physics
1733: Chair in Pure Mathematics
Duties: Scientific consultant to the government, prepares maps, advises Russian Navy, tests designs for engines

Timeline

1707: Euler was born.
1720: University of Basel
1723: Master's Degree
1726: First Paper - Analysis of the placement of masts on a sailing ship.
1727: Moves to St. Petersburg, Russia
1730: Professor of Physics
1733: Chair in Pure Mathematics
1734: Marries Katharina Gsell

Timeline

1707: Euler was born.
1720: University of Basel
1723: Master's Degree
1726: First Paper - Analysis of the placement of masts on a sailing ship.
1727: Moves to St. Petersburg, Russia
1730: Professor of Physics
1733: Chair in Pure Mathematics
1734: Marries Katharina Gsell
1736: First book - Mechanica

Timeline

1707: Euler was born.
1720: University of Basel
1723: Master's Degree
1726: First Paper - Analysis of the placement of masts on a sailing ship.
1727: Moves to St. Petersburg, Russia
1730: Professor of Physics
1733: Chair in Pure Mathematics
1734: Marries Katharina Gsell
1736: First book - Mechanica
1741: Moves to Berlin

Timeline

1748: Introductio in Analysin

Timeline

1748: Introductio in Analysin 1755: Books on Differential Calculus

Timeline

1748: Introductio in Analysin
1755: Books on Differential Calculus
1755: Letters to Princess

Timeline

1748: Introductio in Analysin
1755: Books on Differential Calculus
1755: Letters to Princess(over 300 in total)

Timeline

1748: Introductio in Analysin
1755: Books on Differential Calculus
1755: Letters to Princess
1766: Returns to St. Petersburg

Timeline

1748: Introductio in Analysin
1755: Books on Differential Calculus
1755: Letters to Princess
1766: Returns to St. Petersburg
1768: Book on Integral Calculus

Timeline

1748: Introductio in Analysin
1755: Books on Differential Calculus
1755: Letters to Princess
1766: Returns to St. Petersburg
1768: Book on Integral Calculus
1772: Treatise on the motion of the moon

Timeline

1748: Introductio in Analysin
1755: Books on Differential Calculus
1755: Letters to Princess
1766: Returns to St. Petersburg
1768: Book on Integral Calculus
1772: Treatise on the motion of the moon
1773: Katharina died

Timeline

1748: Introductio in Analysin
1755: Books on Differential Calculus
1755: Letters to Princess
1766: Returns to St. Petersburg
1768: Book on Integral Calculus
1772: Treatise on the motion of the moon
1773: Katharina died
1776: Remarries (his wife's sister)

Timeline

1748: Introductio in Analysin
1755: Books on Differential Calculus
1755: Letters to Princess
1766: Returns to St. Petersburg
1768: Book on Integral Calculus
1772: Treatise on the motion of the moon
1773: Katharina died
1776: Remarries (his wife's sister)
1783: Died

Timeline

Gottfried Leibniz (1646-1716)

Timeline

Jacob Bernoulli (1654-1705)

Timeline

Johann Bernoulli (1667-1748)

Timeline

Christian Goldbach (1690-1764)

Timeline

Daniel Bernoulli (1700-1782)

Timeline

Leonhard Euler

Timeline

Peter the Great (1672)-(1725)

Timeline

Catherine the Great (1729-1796)

Timeline

Frederick the Great (1712-1786)

Timeline

Joseph Louis Lagrange(1736-1813)

Timeline

St. Petersburg Academy of Science(1724)

Euler's Formula for Polyhedra

Euler's Formula for Polyhedra

- While Euler was studying polyhedra, he noticed a relationship between the number of edges, vertices and faces of a polyhedra.

Euler's Formula for Polyhedra

- While Euler was studying polyhedra, he noticed a relationship between the number of edges, vertices and faces of a polyhedra.
- Let V be the number of vertices.

Euler's Formula for Polyhedra

- While Euler was studying polyhedra, he noticed a relationship between the number of edges, vertices and faces of a polyhedra.
- Let V be the number of vertices.
- Let E be the number of edges.

Euler's Formula for Polyhedra

- While Euler was studying polyhedra, he noticed a relationship between the number of edges, vertices and faces of a polyhedra.
- Let V be the number of vertices.
- Let E be the number of edges.
- Let F be the number of faces.

Euler's Formula for Polyhedra

- While Euler was studying polyhedra, he noticed a relationship between the number of edges, vertices and faces of a polyhedra.
- Let V be the number of vertices.
- Let E be the number of edges.
- Let F be the number of faces.

Then we have

$$
V-E+F=2 .
$$

Euler's Formula for Polyhedra

Auxilary Problem: Suppose we have n points inside a triangle that are connected to form triangles (triangulation). How many triangles are there?

Euler's Formula for Polyhedra

Auxilary Problem: Suppose we have n points inside a triangle that are connected to form triangles (triangulation). How many triangles are there?

Euler's Formula for Polyhedra

Suppose there are N interior triangles. We will find N.

Euler's Formula for Polyhedra

Suppose there are N interior triangles. We will find N.

- Sum the angles of the interior triangles in two ways.

Euler's Formula for Polyhedra

Suppose there are N interior triangles. We will find N.

- Sum the angles of the interior triangles in two ways.
- First way: N triangles; sum of angles is ${ }^{a} N \pi$.
${ }^{a}$ Remember that π radians is the same as 180°.

Euler's Formula for Polyhedra

Suppose there are N interior triangles. We will find N.

- Sum the angles of the interior triangles in two ways.
- First way: N triangles; sum of angles is ${ }^{a} N \pi$.
- Second way: Interior points + exterior triangle;

[^0]
Euler's Formula for Polyhedra

Suppose there are N interior triangles. We will find N.

- Sum the angles of the interior triangles in two ways.
- First way: N triangles; sum of angles is ${ }^{a} N \pi$.
- Second way: Interior points + exterior triangle; sum of angles is $2 n \pi$
${ }^{a}$ Remember that π radians is the same as 180°.

Euler's Formula for Polyhedra

Suppose there are N interior triangles. We will find N.

- Sum the angles of the interior triangles in two ways.
- First way: N triangles; sum of angles is ${ }^{a} N \pi$.
- Second way: Interior points + exterior triangle; sum of angles is $2 n \pi+\pi$

[^1]
Euler's Formula for Polyhedra

Suppose there are N interior triangles. We will find N.

- Sum the angles of the interior triangles in two ways.
- First way: N triangles; sum of angles is ${ }^{a} N \pi$.
- Second way: Interior points + exterior triangle; sum of angles is $2 n \pi+\pi=(2 n+1) \pi$.
${ }^{a}$ Remember that π radians is the same as 180°.

Euler's Formula for Polyhedra

Suppose there are N interior triangles. We will find N.

- Sum the angles of the interior triangles in two ways.
- First way: N triangles; sum of angles is ${ }^{a} N \pi$.
- Second way: Interior points + exterior triangle; sum of angles is $2 n \pi+\pi=(2 n+1) \pi$.
- Hence, we have $N \pi=(2 n+1) \pi$, or

$$
N=2 n+1 .
$$

${ }^{a}$ Remember that π radians is the same as 180°.

Euler's Formula for Polyhedra

Suppose there are N interior triangles. We will find N.

- Sum the angles of the interior triangles in two ways.
- First way: N triangles; sum of angles is ${ }^{a} N \pi$.
- Second way: Interior points + exterior triangle; sum of angles is $2 n \pi+\pi=(2 n+1) \pi$.
- Hence, we have $N \pi=(2 n+1) \pi$, or

$$
N=2 n+1 .
$$

Thus, if we have n interior points, we will have $2 n+1$ triangles.
${ }^{a}$ Remember that π radians is the same as 180°.

Euler's Formula for Polyhedra

Now, suppose we have a polyhedra that can be projected onto the plane as in the problem above. Then we have

Euler's Formula for Polyhedra

Now, suppose we have a polyhedra that can be projected onto the plane as in the problem above. Then we have

$$
\begin{aligned}
V & =3+n \\
F & =N+1=2(n+1) \\
E & =\frac{3 F}{2}=3(n+1)
\end{aligned}
$$

Euler's Formula for Polyhedra

Now, suppose we have a polyhedra that can be projected onto the plane as in the problem above. Then we have

$$
\begin{aligned}
V & =3+n \\
F & =N+1=2(n+1) \\
E & =\frac{3 F}{2}=3(n+1)
\end{aligned}
$$

Then we see that

$$
V-E+F=
$$

Euler's Formula for Polyhedra

Now, suppose we have a polyhedra that can be projected onto the plane as in the problem above. Then we have

$$
\begin{aligned}
V & =3+n \\
F & =N+1=2(n+1) \\
E & =\frac{3 F}{2}=3(n+1)
\end{aligned}
$$

Then we see that

$$
V-E+F=(3+n)
$$

Euler's Formula for Polyhedra

Now, suppose we have a polyhedra that can be projected onto the plane as in the problem above. Then we have

$$
\begin{aligned}
V & =3+n \\
F & =N+1=2(n+1) \\
E & =\frac{3 F}{2}=3(n+1)
\end{aligned}
$$

Then we see that

$$
V-E+F=(3+n)-(3 n+3)
$$

Euler's Formula for Polyhedra

Now, suppose we have a polyhedra that can be projected onto the plane as in the problem above. Then we have

$$
\begin{aligned}
V & =3+n \\
F & =N+1=2(n+1) \\
E & =\frac{3 F}{2}=3(n+1)
\end{aligned}
$$

Then we see that

$$
V-E+F=(3+n)-(3 n+3)+(2 n+2)
$$

Euler's Formula for Polyhedra

Now, suppose we have a polyhedra that can be projected onto the plane as in the problem above. Then we have

$$
\begin{aligned}
V & =3+n \\
F & =N+1=2(n+1) \\
E & =\frac{3 F}{2}=3(n+1)
\end{aligned}
$$

Then we see that

$$
V-E+F=(3+n)-(3 n+3)+(2 n+2)=2
$$

Euler's Formula for Polyhedra

Now, suppose we have a polyhedra that can be projected onto the plane as in the problem above. Then we have

$$
\begin{aligned}
V & =3+n \\
F & =N+1=2(n+1) \\
E & =\frac{3 F}{2}=3(n+1)
\end{aligned}
$$

Then we see that

$$
V-E+F=(3+n)-(3 n+3)+(2 n+2)=2,
$$

which is Euler's formula!

Euler's Formula for Polyhedra

We have proven Euler's Formula for polyhedra with only triangular faces. We can prove it in general, but we must recall a useful fact.

Euler's Formula for Polyhedra

We have proven Euler's Formula for polyhedra with only triangular faces. We can prove it in general, but we must recall a useful fact.
Theorem: For n greater than 3, the sum of the interior angles of a polygon with n sides will be

$$
(n-2) \pi
$$

Euler's Formula for Polyhedra

We have proven Euler's Formula for polyhedra with only triangular faces. We can prove it in general, but we must recall a useful fact.
Theorem: For n greater than 3, the sum of the interior angles of a polygon with n sides will be

$$
(n-2) \pi
$$

For example, for a triangle, $n=3$, and the sum of the angles is $(3-1) \pi=\pi$.

Euler's Formula for Polyhedra

We have proven Euler's Formula for polyhedra with only triangular faces. We can prove it in general, but we must recall a useful fact.
Theorem: For n greater than 3, the sum of the interior angles of a polygon with n sides will be

$$
(n-2) \pi
$$

For example, for a triangle, $n=3$, and the sum of the angles is $(3-1) \pi=\pi$.
For a square, $n=4$, and the sum of the angles is $(4-2) \pi=2 \pi$.

Euler's Formula for Polyhedra

Now assume that we can project any polyhedron onto the plane so that none of the projections of the edges cross. We will prove Euler's Formula for the general case.

Euler's Formula for Polyhedra

Now assume that we can project any polyhedron onto the plane so that none of the projections of the edges cross. We will prove Euler's Formula for the general case.

- Let the exterior polygon have n_{0} edges.

Euler's Formula for Polyhedra

Now assume that we can project any polyhedron onto the plane so that none of the projections of the edges cross. We will prove Euler's Formula for the general case.

- Let the exterior polygon have n_{0} edges.
- Let there be m polygons on the projection.

Euler's Formula for Polyhedra

Now assume that we can project any polyhedron onto the plane so that none of the projections of the edges cross. We will prove Euler's Formula for the general case.

- Let the exterior polygon have n_{0} edges.
- Let there be m polygons on the projection. (This means that there were $m+1$ faces on the polyhedron, where the extra face is the exterior polygon in the projection.)

Euler's Formula for Polyhedra

Now assume that we can project any polyhedron onto the plane so that none of the projections of the edges cross. We will prove Euler's Formula for the general case.

- Let the exterior polygon have n_{0} edges.
- Let there be m polygons on the projection.
- Let n_{i} be the number of edges of the i th polygon.

Euler's Formula for Polyhedra

Now assume that we can project any polyhedron onto the plane so that none of the projections of the edges cross. We will prove Euler's Formula for the general case.

- Let the exterior polygon have n_{0} edges.
- Let there be m polygons on the projection.
- Let n_{i} be the number of edges of the i th polygon.
- Then we have

$$
n_{1}+n_{2}+\ldots+n_{m}
$$

Euler's Formula for Polyhedra

Now assume that we can project any polyhedron onto the plane so that none of the projections of the edges cross. We will prove Euler's Formula for the general case.

- Let the exterior polygon have n_{0} edges.
- Let there be m polygons on the projection.
- Let n_{i} be the number of edges of the i th polygon.
- Then we have

$$
n_{1}+n_{2}+\ldots+n_{m}+n_{0}
$$

Euler's Formula for Polyhedra

Now assume that we can project any polyhedron onto the plane so that none of the projections of the edges cross. We will prove Euler's Formula for the general case.

- Let the exterior polygon have n_{0} edges.
- Let there be m polygons on the projection.
- Let n_{i} be the number of edges of the i th polygon.
- Then we have

$$
n_{1}+n_{2}+\ldots+n_{m}+n_{0}=2 E
$$

Euler's Formula for Polyhedra

Again, we sum the interior angles of interior polygons of the projection in two ways:

Euler's Formula for Polyhedra

Again, we sum the interior angles of interior polygons of the projection in two ways:

- Interior polygons:

Euler's Formula for Polyhedra

Again, we sum the interior angles of interior polygons of the projection in two ways:

- Interior polygons:

$$
\left(n_{1}-2\right) \pi+\left(n_{2}-2\right) \pi+\ldots+\left(n_{m}-2\right) \pi
$$

Euler's Formula for Polyhedra

Again, we sum the interior angles of interior polygons of the projection in two ways:

- Interior polygons:

$$
\begin{aligned}
& \left(n_{1}-2\right) \pi+\left(n_{2}-2\right) \pi+\ldots+\left(n_{m}-2\right) \pi \\
& =\left(n_{1}+n_{2}+\ldots+n_{m}\right) \pi-\overbrace{(2+2+\ldots+2)}^{m} \pi
\end{aligned}
$$

Euler's Formula for Polyhedra

Again, we sum the interior angles of interior polygons of the projection in two ways:

- Interior polygons:

$$
\begin{aligned}
& \left(n_{1}-2\right) \pi+\left(n_{2}-2\right) \pi+\ldots+\left(n_{m}-2\right) \pi \\
& =\left(n_{1}+n_{2}+\ldots+n_{m}\right) \pi-\overbrace{(2+2+\ldots+2)}^{m} \pi \\
& +\left(n_{0}-2\right) \pi-\left(n_{0}-2\right) \pi
\end{aligned}
$$

Euler's Formula for Polyhedra

Again, we sum the interior angles of interior polygons of the projection in two ways:

- Interior polygons:

$$
\begin{aligned}
& \left(n_{1}-2\right) \pi+\left(n_{2}-2\right) \pi+\ldots+\left(n_{m}-2\right) \pi \\
& =\left(n_{1}+n_{2}+\ldots+n_{m}\right) \pi-\overbrace{(2+2+\ldots+2)}^{m} \pi \\
& +\left(n_{0}-2\right) \pi-\left(n_{0}-2\right) \pi \\
& =\left(n_{1}+n_{2}+\ldots+n_{m}+n_{0}\right) \pi-2(m+1) \pi-\left(n_{0}-2\right) \pi
\end{aligned}
$$

Euler's Formula for Polyhedra

Again, we sum the interior angles of interior polygons of the projection in two ways:

- Interior polygons:

$$
\begin{aligned}
& \left(n_{1}-2\right) \pi+\left(n_{2}-2\right) \pi+\ldots+\left(n_{m}-2\right) \pi \\
& =\left(n_{1}+n_{2}+\ldots+n_{m}\right) \pi-\overbrace{(2+2+\ldots+2)}^{m} \pi \\
& +\left(n_{0}-2\right) \pi-\left(n_{0}-2\right) \pi \\
& =\left(n_{1}+n_{2}+\ldots+n_{m}+n_{0}\right) \pi-2(m+1) \pi-\left(n_{0}-2\right) \pi \\
& =2 E \pi-2 F \pi-\left(n_{0}-2\right) \pi
\end{aligned}
$$

Euler's Formula for Polyhedra

Again, we sum the interior angles of interior polygons of the projection in two ways:

- Interior polygons:

$$
2 E \pi-2 F \pi-\left(n_{0}-2\right) \pi
$$

Euler's Formula for Polyhedra

Again, we sum the interior angles of interior polygons of the projection in two ways:

- Interior polygons:

$$
2 E \pi-2 F \pi-\left(n_{0}-2\right) \pi
$$

- Interior points + exterior polygon:

Euler's Formula for Polyhedra

Again, we sum the interior angles of interior polygons of the projection in two ways:

- Interior polygons:

$$
2 E \pi-2 F \pi-\left(n_{0}-2\right) \pi
$$

- Interior points + exterior polygon:

$$
\left(V-n_{0}\right) 2 \pi
$$

Euler's Formula for Polyhedra

Again, we sum the interior angles of interior polygons of the projection in two ways:

- Interior polygons:

$$
2 E \pi-2 F \pi-\left(n_{0}-2\right) \pi
$$

- Interior points + exterior polygon:

$$
\left(V-n_{0}\right) 2 \pi+\left(n_{0}-2\right) \pi
$$

Euler's Formula for Polyhedra

Again, we sum the interior angles of interior polygons of the projection in two ways:

- Interior polygons:

$$
2 E \pi-2 F \pi-\left(n_{0}-2\right) \pi
$$

- Interior points + exterior polygon:

$$
\begin{aligned}
& \left(V-n_{0}\right) 2 \pi+\left(n_{0}-2\right) \pi \\
& =2 V \pi-n_{0} \pi-2 \pi
\end{aligned}
$$

Euler's Formula for Polyhedra

Again, we sum the interior angles of interior polygons of the projection in two ways:

- Interior polygons:

$$
2 E \pi-2 F \pi-\left(n_{0}-2\right) \pi
$$

- Interior points + exterior polygon:

$$
\begin{aligned}
& \left(V-n_{0}\right) 2 \pi+\left(n_{0}-2\right) \pi \\
& =2 V \pi-n_{0} \pi-2 \pi+2 \pi-2 \pi
\end{aligned}
$$

Euler's Formula for Polyhedra

Again, we sum the interior angles of interior polygons of the projection in two ways:

- Interior polygons:

$$
2 E \pi-2 F \pi-\left(n_{0}-2\right) \pi
$$

- Interior points + exterior polygon:

$$
\begin{aligned}
& \left(V-n_{0}\right) 2 \pi+\left(n_{0}-2\right) \pi \\
& =2 V \pi-n_{0} \pi-2 \pi+2 \pi-2 \pi \\
& =2 V \pi-\left(n_{0}-2\right) \pi-4 \pi
\end{aligned}
$$

Euler's Formula for Polyhedra

Again, we sum the interior angles of interior polygons of the projection in two ways:

- Interior polygons:

$$
2 E \pi-2 F \pi-\left(n_{0}-2\right) \pi
$$

- Interior points + exterior polygon:

$$
2 V \pi-\left(n_{0}-2\right) \pi-4 \pi
$$

Euler's Formula for Polyhedra

Again, we sum the interior angles of interior polygons of the projection in two ways:

- Interior polygons:

$$
2 E \pi-2 F \pi-\left(n_{0}-2\right) \pi
$$

- Interior points + exterior polygon:

$$
2 V \pi-\left(n_{0}-2\right) \pi-4 \pi
$$

So

$$
2 E \pi-2 F \pi-\left(n_{0}-2\right) \pi=2 V \pi-\left(n_{0}-2\right) \pi-4 \pi
$$

Euler's Formula for Polyhedra

Again, we sum the interior angles of interior polygons of the projection in two ways:

- Interior polygons:

$$
2 E \pi-2 F \pi-\left(n_{0}-2\right) \pi
$$

- Interior points + exterior polygon:

$$
2 V \pi-\left(n_{0}-2\right) \pi-4 \pi
$$

So

$$
\begin{aligned}
& 2 E \pi-2 F \pi-\left(n_{0}-2\right) \pi=2 V \pi-\left(n_{0}-2\right) \pi-4 \pi \\
& \Rightarrow E-V+F=2
\end{aligned}
$$

The Basel Problem

Here we attempt to solve the problem of finding the sum

$$
1+\frac{1}{4}+\frac{1}{9}+\ldots+\frac{1}{n^{2}}+\ldots
$$

The Basel Problem

Here we attempt to solve the problem of finding the sum

$$
1+\frac{1}{4}+\frac{1}{9}+\ldots+\frac{1}{n^{2}}+\ldots
$$

This was known as the Basel problem - mathematicians before Euler had tremendous difficulties trying to solve it.

The Basel Problem

Here we attempt to solve the problem of finding the sum

$$
1+\frac{1}{4}+\frac{1}{9}+\ldots+\frac{1}{n^{2}}+\ldots
$$

This was known as the Basel problem - mathematicians before Euler had tremendous difficulties trying to solve it. It was introduced by the Italian Pietro Mengoli in 1644, and Jacob Bernoulli popularized it in 1689.

The Basel Problem

Here we attempt to solve the problem of finding the sum

$$
1+\frac{1}{4}+\frac{1}{9}+\ldots+\frac{1}{n^{2}}+\ldots
$$

This was known as the Basel problem - mathematicians before Euler had tremendous difficulties trying to solve it. It was introduced by the Italian Pietro Mengoli in 1644, and Jacob Bernoulli popularized it in 1689. The Bernoulli family spend so much time solving it while residing in Basel, Switzerland, that it became known as the Basel problem.

The Basel Problem

Here we attempt to solve the problem of finding the sum

$$
1+\frac{1}{4}+\frac{1}{9}+\ldots+\frac{1}{n^{2}}+\ldots
$$

This was known as the Basel problem - mathematicians before Euler had tremendous difficulties trying to solve it. It was introduced by the Italian Pietro Mengoli in 1644, and Jacob Bernoulli popularized it in 1689. The Bernoulli family spend so much time solving it while residing in Basel, Switzerland, that it became known as the Basel problem. When Euler solved the problem in 1735, the exact value of the sum was a genuine surprise.

The Basel Problem

First we give a little explanation of the term infinite series. If we ignore all the terms after the N th term, we obtain

$$
1+\frac{1}{4}+\frac{1}{9}+\ldots+\frac{1}{N^{2}} .
$$

The Basel Problem

First we give a little explanation of the term infinite series. If we ignore all the terms after the N th term, we obtain

$$
1+\frac{1}{4}+\frac{1}{9}+\ldots+\frac{1}{N^{2}} .
$$

We call this a partial sum.

The Basel Problem

First we give a little explanation of the term infinite series. If we ignore all the terms after the N th term, we obtain

$$
1+\frac{1}{4}+\frac{1}{9}+\ldots+\frac{1}{N^{2}} .
$$

We call this a partial sum. If the partial sums tend to a certain value S as N becomes large, then we say the infinite series has a value S.

The Basel Problem

First, we note that partial sums don't always tend to a certain number.

The Basel Problem

First, we note that partial sums don't always tend to a certain number. For example, if we consider the simple series

$$
1+1+1+\ldots
$$

The Basel Problem

First, we note that partial sums don't always tend to a certain number. For example, if we consider the simple series

$$
1+1+1+\ldots,
$$

its partial sums are

$$
\overbrace{1+1+\ldots+1}^{N}=N .
$$

The Basel Problem

First, we note that partial sums don't always tend to a certain number. For example, if we consider the simple series

$$
1+1+1+\ldots,
$$

its partial sums are

It is easy to see that as N grows, this partial sums go to infinity.

The Basel Problem

But if we look at the graph of the partial sums of our series, we obtain the following picture.

The Basel Problem

But if we look at the graph of the partial sums of our series, we obtain the following picture.

From this picture, we suspect that the partial sums tend to some number which is a little more than 1.6.

The Basel Problem

Euler, in 1735, solved the Basel problem by using some ingenious methods.

The Basel Problem

Euler, in 1735, solved the Basel problem by using some ingenious methods. He applied techniques used in finite cases to our infinite series.

The Basel Problem

Euler, in 1735, solved the Basel problem by using some ingenious methods. He applied techniques used in finite cases to our infinite series. We will introduce the idea in terms of a quadratic.

The Basel Problem

Euler, in 1735, solved the Basel problem by using some ingenious methods. He applied techniques used in finite cases to our infinite series. We will introduce the idea in terms of a quadratic.

- Consider a quadratic function $f(x)=x^{2}+b x+c$ with roots p and q.

The Basel Problem

Euler, in 1735, solved the Basel problem by using some ingenious methods. He applied techniques used in finite cases to our infinite series. We will introduce the idea in terms of a quadratic.

- Consider a quadratic function $f(x)=x^{2}+b x+c$ with roots p and q.
- Then we can write $f(x)=(x-p)(x-q)$.

The Basel Problem

Euler, in 1735, solved the Basel problem by using some ingenious methods. He applied techniques used in finite cases to our infinite series. We will introduce the idea in terms of a quadratic.

- Consider a quadratic function $f(x)=x^{2}+b x+c$ with roots p and q.
- Then we can write $f(x)=(x-p)(x-q)$.
- Expand $f(x)$:

$$
f(x)=x^{2}-(p+q) x+p q .
$$

The Basel Problem

Euler, in 1735, solved the Basel problem by using some ingenious methods. He applied techniques used in finite cases to our infinite series. We will introduce the idea in terms of a quadratic.

- Consider a quadratic function $f(x)=x^{2}+b x+c$ with roots p and q.
- Then we can write $f(x)=(x-p)(x-q)$.
- Expand $f(x)$:

$$
f(x)=x^{2}-(p+q) x+p q .
$$

- Then $(p+q)=-b$.

The Basel Problem

Euler used the same idea as we used for the quadratic for an infinite polynomial!

The Basel Problem

Euler used the same idea as we used for the quadratic for an infinite polynomial! Consider the function

$$
f(x)=\frac{\sin (x)}{x} .
$$

The Basel Problem

Euler used the same idea as we used for the quadratic for an infinite polynomial! Consider the function

$$
f(x)=\frac{\sin (x)}{x} .
$$

- Any root of f has to be a root of the numerator, $\sin (x)$.

The Basel Problem

Euler used the same idea as we used for the quadratic for an infinite polynomial! Consider the function

$$
f(x)=\frac{\sin (x)}{x}
$$

- Any root of f has to be a root of the numerator, $\sin (x)$. The roots of $\sin (x)$ are

$$
0, \pm \pi, \pm 2 \pi, \ldots, \pm n \pi, \ldots
$$

- Near $x=0, \sin (x) \approx x$, so $f(x) \approx 1$, so $x=0$ is not a root.

The Basel Problem

Euler used the same idea as we used for the quadratic for an infinite polynomial! Consider the function

$$
f(x)=\frac{\sin (x)}{x}
$$

- Any root of f has to be a root of the numerator, $\sin (x)$. The roots of $\sin (x)$ are

$$
0, \pm \pi, \pm 2 \pi, \ldots, \pm n \pi, \ldots
$$

- Near $x=0, \sin (x) \approx x$, so $f(x) \approx 1$, so $x=0$ is not a root.
- Therefore, the roots of $f(x)$ are

$$
\pm \pi, \pm 2 \pi, \ldots, \pm n \pi, \ldots
$$

The Basel Problem

Since the roots of $f(x)$ are

$$
\pm \pi, \pm 2 \pi, \ldots, \pm n \pi, \ldots
$$

The Basel Problem

Since the roots of $f(x)$ are

$$
\pm \pi, \pm 2 \pi, \ldots, \pm n \pi, \ldots
$$

it is reasonable to assume that

The Basel Problem

Since the roots of $f(x)$ are

$$
\pm \pi, \pm 2 \pi, \ldots, \pm n \pi, \ldots,
$$

it is reasonable to assume that

$$
f(x)=\left(1-\frac{x}{\pi}\right)\left(1+\frac{x}{\pi}\right)\left(1-\frac{x}{2 \pi}\right)\left(1+\frac{x}{2 \pi}\right) \cdots
$$

(Instead of writing the factor $(n \pi-x)$, we write the factor ($1-\frac{x}{n \pi}$), which corresponds to the same root, $n \pi$.)

The Basel Problem

Since the roots of $f(x)$ are

$$
\pm \pi, \pm 2 \pi, \ldots, \pm n \pi, \ldots
$$

it is reasonable to assume that

$$
f(x)=\overbrace{\left(1-\frac{x}{\pi}\right)\left(1+\frac{x}{\pi}\right)}\left(1-\frac{x}{2 \pi}\right)\left(1+\frac{x}{2 \pi}\right) \cdots
$$

The Basel Problem

Since the roots of $f(x)$ are

$$
\pm \pi, \pm 2 \pi, \ldots, \pm n \pi, \ldots
$$

it is reasonable to assume that

$$
f(x)=\overbrace{\left(1-\frac{x}{\pi}\right)\left(1+\frac{x}{\pi}\right)} \overbrace{\left(1-\frac{x}{2 \pi}\right)}^{\left(1+\frac{x}{2 \pi}\right)}, \cdots
$$

The Basel Problem

Since the roots of $f(x)$ are

$$
\pm \pi, \pm 2 \pi, \ldots, \pm n \pi, \ldots
$$

it is reasonable to assume that

$$
\begin{aligned}
f(x) & =\overbrace{\left(1-\frac{x}{\pi}\right)\left(1+\frac{x}{\pi}\right)} \overbrace{\left(1-\frac{x}{2 \pi}\right)\left(1+\frac{x}{2 \pi}\right)} \cdots \\
& =\left(1-\frac{x^{2}}{\pi^{2}}\right)\left(1-\frac{x^{2}}{4 \pi^{2}}\right)
\end{aligned}
$$

The Basel Problem

Since the roots of $f(x)$ are

$$
\pm \pi, \pm 2 \pi, \ldots, \pm n \pi, \ldots
$$

it is reasonable to assume that

$$
\begin{aligned}
f(x) & =\overbrace{\left(1-\frac{x}{\pi}\right)\left(1+\frac{x}{\pi}\right)} \overbrace{\left(1-\frac{x}{2 \pi}\right)\left(1+\frac{x}{2 \pi}\right)} \cdots \\
& =\left(1-\frac{x^{2}}{\pi^{2}}\right)\left(1-\frac{x^{2}}{4 \pi^{2}}\right)\left(1-\frac{x^{2}}{9 \pi^{2}}\right)
\end{aligned}
$$

The Basel Problem

Since the roots of $f(x)$ are

$$
\pm \pi, \pm 2 \pi, \ldots, \pm n \pi, \ldots
$$

it is reasonable to assume that

$$
\begin{aligned}
f(x) & =\overbrace{\left(1-\frac{x}{\pi}\right)\left(1+\frac{x}{\pi}\right)} \overbrace{\left(1-\frac{x}{2 \pi}\right)\left(1+\frac{x}{2 \pi}\right)} \cdots \\
& =\left(1-\frac{x^{2}}{\pi^{2}}\right)\left(1-\frac{x^{2}}{4 \pi^{2}}\right)\left(1-\frac{x^{2}}{9 \pi^{2}}\right)\left(1-\frac{x^{2}}{16 \pi^{2}}\right) \cdots
\end{aligned}
$$

The Basel Problem

Since the roots of $f(x)$ are

$$
\pm \pi, \pm 2 \pi, \ldots, \pm n \pi, \ldots
$$

it is reasonable to assume that

$$
\begin{aligned}
f(x) & =\overbrace{\left(1-\frac{x}{\pi}\right)\left(1+\frac{x}{\pi}\right)} \overbrace{\left(1-\frac{x}{2 \pi}\right)\left(1+\frac{x}{2 \pi}\right)} \cdots \\
& =\left(1-\frac{x^{2}}{\pi^{2}}\right)\left(1-\frac{x^{2}}{4 \pi^{2}}\right)\left(1-\frac{x^{2}}{9 \pi^{2}}\right)\left(1-\frac{x^{2}}{16 \pi^{2}}\right) \cdots
\end{aligned}
$$

Now if we expand $f(x)$ as if it were a polynomial, we can see that the coefficient of x^{2} would be

$$
-\frac{1}{\pi^{2}}
$$

The Basel Problem

Since the roots of $f(x)$ are

$$
\pm \pi, \pm 2 \pi, \ldots, \pm n \pi, \ldots
$$

it is reasonable to assume that

$$
\begin{aligned}
f(x) & =\overbrace{\left(1-\frac{x}{\pi}\right)\left(1+\frac{x}{\pi}\right)} \overbrace{\left(1-\frac{x}{2 \pi}\right)\left(1+\frac{x}{2 \pi}\right)} \cdots \\
& =\left(1-\frac{x^{2}}{\pi^{2}}\right)\left(1-\frac{x^{2}}{4 \pi^{2}}\right)\left(1-\frac{x^{2}}{9 \pi^{2}}\right)\left(1-\frac{x^{2}}{16 \pi^{2}}\right) \cdots
\end{aligned}
$$

Now if we expand $f(x)$ as if it were a polynomial, we can see that the coefficient of x^{2} would be

$$
-\frac{1}{\pi^{2}}-\frac{1}{4 \pi^{2}}
$$

The Basel Problem

Since the roots of $f(x)$ are

$$
\pm \pi, \pm 2 \pi, \ldots, \pm n \pi, \ldots
$$

it is reasonable to assume that

$$
\begin{aligned}
f(x) & =\overbrace{\left(1-\frac{x}{\pi}\right)\left(1+\frac{x}{\pi}\right)} \overbrace{\left(1-\frac{x}{2 \pi}\right)\left(1+\frac{x}{2 \pi}\right)} \cdots \\
& =\left(1-\frac{x^{2}}{\pi^{2}}\right)\left(1-\frac{x^{2}}{4 \pi^{2}}\right)\left(1-\frac{x^{2}}{9 \pi^{2}}\right)\left(1-\frac{x^{2}}{16 \pi^{2}}\right) \cdots
\end{aligned}
$$

Now if we expand $f(x)$ as if it were a polynomial, we can see that the coefficient of x^{2} would be

$$
-\frac{1}{\pi^{2}}-\frac{1}{4 \pi^{2}}-\frac{1}{9 \pi^{2}}-\ldots
$$

The Basel Problem

Now Euler also knew (as you will in a few years!) that we can also express the function f as

$$
f(x)=\frac{\sin (x)}{x}=1-\frac{x^{2}}{3!}+\frac{x^{4}}{5!}-\ldots+\frac{(-1)^{n} x^{2 n}}{(2 n+1)!}+\ldots
$$

The Basel Problem

Now Euler also knew (as you will in a few years!) that we can also express the function f as

$$
f(x)=\frac{\sin (x)}{x}=1-\frac{x^{2}}{3!}+\frac{x^{4}}{5!}-\ldots+\frac{(-1)^{n} x^{2 n}}{(2 n+1)!}+\ldots
$$

Therefore we have the infinite product from the last slide must be equal to the infinite sum above.

The Basel Problem

Now Euler also knew (as you will in a few years!) that we can also express the function f as

$$
f(x)=\frac{\sin (x)}{x}=1-\frac{x^{2}}{3!}+\frac{x^{4}}{5!}-\ldots+\frac{(-1)^{n} x^{2 n}}{(2 n+1)!}+\ldots
$$

Therefore we have the infinite product from the last slide must be equal to the infinite sum above.
The coefficient of x^{2} in the infinite sum is $-\frac{1}{6}$.

The Basel Problem

Now Euler also knew (as you will in a few years!) that we can also express the function f as

$$
f(x)=\frac{\sin (x)}{x}=1-\frac{x^{2}}{3!}+\frac{x^{4}}{5!}-\ldots+\frac{(-1)^{n} x^{2 n}}{(2 n+1)!}+\ldots
$$

Therefore we have the infinite product from the last slide must be equal to the infinite sum above.
The coefficient of x^{2} in the infinite sum is $-\frac{1}{6}$. Equating the coefficients of x^{2} gives

The Basel Problem

Now Euler also knew (as you will in a few years!) that we can also express the function f as

$$
f(x)=\frac{\sin (x)}{x}=1-\frac{x^{2}}{3!}+\frac{x^{4}}{5!}-\ldots+\frac{(-1)^{n} x^{2 n}}{(2 n+1)!}+\ldots
$$

Therefore we have the infinite product from the last slide must be equal to the infinite sum above.
The coefficient of x^{2} in the infinite sum is $-\frac{1}{6}$. Equating the coefficients of x^{2} gives

$$
-\frac{1}{\pi^{2}}-\frac{1}{4 \pi^{2}}-\frac{1}{9 \pi^{2}}-\ldots=-\frac{1}{6}
$$

The Basel Problem

Now Euler also knew (as you will in a few years!) that we can also express the function f as

$$
f(x)=\frac{\sin (x)}{x}=1-\frac{x^{2}}{3!}+\frac{x^{4}}{5!}-\ldots+\frac{(-1)^{n} x^{2 n}}{(2 n+1)!}+\ldots
$$

Therefore we have the infinite product from the last slide must be equal to the infinite sum above.
The coefficient of x^{2} in the infinite sum is $-\frac{1}{6}$. Equating the coefficients of x^{2} gives

$$
\begin{aligned}
& -\frac{1}{\pi^{2}}-\frac{1}{4 \pi^{2}}-\frac{1}{9 \pi^{2}}-\ldots=-\frac{1}{6} \\
\Rightarrow & 1-\frac{1}{4}-\frac{1}{9}-\ldots=\frac{\pi^{2}}{6} .
\end{aligned}
$$

The Basel Problem

It is interesting to note that Euler was not yet aware of the symbol π for the number $3.14159265 \ldots$, and stated the result as follows:

The Basel Problem

It is interesting to note that Euler was not yet aware of the symbol π for the number $3.14159265 \ldots$, and stated the result as follows:
"I have discovered for the sum of six of this series to be equal to the square of the circumference of a circle whose diameter is 1 ."

The Basel Problem

It is interesting to note that Euler was not yet aware of the symbol π for the number $3.14159265 \ldots$, and stated the result as follows:
"I have discovered for the sum of six of this series to be equal to the square of the circumference of a circle whose diameter is 1 ."
The series he is talking about is the series

$$
1+\frac{1}{4}+\frac{1}{9}+\ldots
$$

The Basel Problem

It is interesting to note that Euler was not yet aware of the symbol π for the number $3.14159265 \ldots$, and stated the result as follows:
"I have discovered for the sum of six of this series to be equal to the square of the circumference of a circle whose diameter is 1 ."
The series he is talking about is the series

$$
1+\frac{1}{4}+\frac{1}{9}+\ldots
$$

and the circumference of a circle whose diameter is 1 is, of course, the number π !

Conclusion

[^0]: ${ }^{a}$ Remember that π radians is the same as 180°.

[^1]: ${ }^{a}$ Remember that π radians is the same as 180°.

