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Abstract: The interconnecting problem approach suggests that often one and the same 

mathematical problem can be used to teach various mathematical topics at different grade 

levels. How is this approach useful for the development of mathematical ability and the 

enrichment of mathematical experiences of all students including the gifted ones? What 

are the benefits for teachers’ and what would teachers need to implement this approach? 

What directions would further research on these issues take? The paper discusses these 

and closely related questions.  

I propose that a long-term study of a progression of mathematical ideas revolved 

around one interconnecting problem is useful for developing a perception of mathematics 

as a connected subject for all learners. Having a natural appreciation for linking learned 

material, mathematically-able students exposed to this approach could develop more 

comprehensive thinking, applicable in many other problem solving situations, such as 

multiple-solution tasks. Because the problem’s solutions vary in levels of difficulty, as 

well as conceptual richness, the approach allows teachers to form a strategic vision 

through a systematic review of various mathematical topics in connection with one 

problem.  

General pedagogical ideas outlined in this paper are supported by discussions of 

concrete mathematical examples and classroom applications. While individual successful 

practices of using this approach are known to be taking place, the need for more data 

collection and interpretation is highlighted.  

Key words: multiple-solution problems, connectedness of mathematics, constructions in 

geometry, teaching support of mathematically inclined students. 
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1. Interconnecting problems and giftedness in mathematics 

Mathematically gifted learners differ from average learners in their ability to 

perceive and retain mathematical information (Krutetskii, 1976). Apparently, they possess 

a well-organized interconnected web of mathematical knowledge (Noss&Hoyles, 1996) 

which manifests itself in flexibility of handling data, originality of interpretations, ability 

to transfer and generalize mathematical  ideas (Greenes, 1981), and creativity of  

approaches taken when problem solving. According to Polya (1973), besides extracting 

relevant information from the memory, “in solving a mathematical problem we have to 

construct an argument connecting the material recollected to a well-adapted whole” 

(Polya,  p.157). This ability to logically organize and process mathematical information is 

yet another distinguishing characteristic of mathematical talent (Krutetskii, 1976).  

A learner could be a good exercise doer but still be incapable of adjusting 

standard techniques for answering unfamiliar questions (see e.g. discussion in Greenes, 

1981). In teachers’ words, “some of them [students] who solve standard problems quickly 

and easily meet an impasse when solving problems requiring independent thoughts” 

(Krutetskii, p. 176). This observation implies that the goal of the teacher consists of 

helping a dedicated learner go beyond instrumental understanding secured by knowing 

mathematical procedures, and achieve relational understanding (Skemp, 1987) between 

different mathematical topics, which assumes connections of various mathematical ideas.  

“An ability to establish and use a wide range of connections offers students alternative 

paths to the solution. … with a formulation of each new connection … the likelihood of 

discovering a solution in enhanced” (Hodgson, 1995, p.19). The emphasis on making 

connections is important not only for the teaching of mathematically gifted learners but is 

becoming one of the core didactical principles of the modern mathematical curricula 

(NCTM, 2000).  

Researchers distinguish several ways of manifesting students’ higher ability: in 

quality of the product, in characteristics of the process, and as a subjective experience. 

There also exists a variety of possibilities to describe and study the phenomenon of 

creativity (see e.g. Sriraman (2004a) for a review of this topic).  As for the driving force 

of mathematical creativity, interaction of ideas in the mind of the thinker is considered as 

one of the most important factors in this process (Ervynck, 1991). Consequently, some 
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authors proposed to measure flexibility of thinking and creativity in mathematics by the 

number of produced solutions to a given problem as well as the ability of the solver to 

switch between different representations of the problem (Krutetskii, 1976; Laycock, 

1970, Silver, 1997). From this perspective, problems which allow multiple solutions 

present a promising tool for nurturing of giftedness and enhancement of the quality of 

teaching in general (Stigler & Hiebert, 1999; Fennema & Romberg, 1999). Leikin and her 

collaborators extensively studied multiple-solution connecting tasks which they define as 

“tasks that contain an explicit requirement for solving the problem in multiple ways” 

(Leikin & Levav-Waynberg, 2008, p.234). They view these tasks as a valuable tool for 

the examination of mathematical creativity (Leikin & Lev, 2007).  

The approach considered in this paper also focuses on problems with multiple 

solutions but those problems are used with a different pedagogical emphasis. The idea is 

not to solve the problem in many different ways at once. Instead, one problem is used 

throughout a learner’s development over a long period of time. Each problem’s solution 

is considered from different perspectives as the learner builds his mathematical 

confidence over several years of schooling.  In particular, problems connecting 

elementary and advanced solutions as well as various methods and techniques are 

valuable for this purpose. The intuition developed through elementary approaches to the 

problem may be used by the learner for a better understanding of more advanced methods 

and at the same time for making connections between the various approaches.   While 

learners at different stages of their growth  “may be able to solve a particular problem, the 

manner of solution and the consequences of long-term development of learning can be 

very different, moving from rigid use of a single procedure through increasing flexibility 

to symbolic operations on thinkable concepts” (Tall, 2006, p.200). Multiple-solution 

problems used to specifically support the progression of the learner are the subject of this 

paper. 

I call a problem interconnecting if it possesses the following characteristics:  

(1) allows simple formulation (without specialized mathematical terms and 

notions); 

 (2) allows various solutions at both elementary and advanced levels;  
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 (3) may be solved by various mathematical tools from distinct mathematical 

branches, which leads to finding multiple solutions,  and  

 (4) is used in different grades and courses and can be understood in various 

contexts.   

Due to the wide range of difficulty levels of its solutions, the same interconnecting 

problem may appear at the elementary school level, and then in progressive grades until 

the advanced level. The students, familiar with the problem from their prior hands-on 

experience, will use their intuition to support the more elaborated techniques presented 

symbolically in the upper grades. This would allow students to see their old problem in a 

new light and interpret new methods in terms of an old and familiar example, and thus 

linking the new concept with the existing schemata. Rephrasing Watson and Mason’s 

description of reference examples, an interconnecting problem is “the one that becomes 

extremely familiar and is used to test out conjectures, to illustrate the meaning of 

theorems” (Watson & Mason, 2005, p.7).  

 From a learner’s standpoint, a problem is interconnecting if its solution has been 

understood by the learner from several conceptual perspectives after working on the 

problem over an extended period of time. This definition of interconnectedness does not 

only characterize a problem but also demands a continuous engagement and certain 

cognitive effort from a learner,  suggesting that same problem can be interconnecting for 

one student but not yet for another. Thus, the possibility of identifying and developing 

mathematically gifted students is embedded in the definition of interconnecting problems.  

Once understood, an interconnecting problem may be used by the solver as a model of 

flexible thinking in another problem context. The possibility for creative solutions arises 

from the learner’s familiarity with other interconnecting problems because this familiarity 

allows the learner to have a comprehensive grasp of the new problem. In the next section 

I discuss interconnecting problems in comparison with various types of other 

mathematical activities and teaching approaches. 
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2. The place of interconnecting problems among other teaching approaches 

There are various types of mathematical activities students face during their 

lessons. Different activities have different learning objectives. For instance, mathematical 

exercises help students to develop proficiency with various standard techniques and rules. 

In contrast, recreational problems appeal to students’ common sense and intuition. There 

are also problems which combine some features of both the exercise and recreational 

types. These problems, on the one hand, are very intuitive and on the other hand 

incorporate special knowledge in a natural fashion. Their elementary solutions may not 

be immediately apparent but when found they demonstrate how several basic facts can be 

useful in a non-routine situation. They help to activate and connect basic knowledge and 

allow the student to discover new relations and properties. According to Polya (1945) and 

Schoenfeld (1985), this type of problem plays a very important role in the development 

of a strong mathematical background of a learner. 

Careful and meaningful construction of appropriate learning environments for 

gifted students is a difficult pedagogical issue. First, according to Diezmann & Watters 

(2002) in order to have a cognitive value for a learner, the mathematical task must have a 

level of difficulty appropriate for the learner, that is, it must be  at the psychological edge 

between his/her comfort and risk-taking zones (Vygotski, 1978).In addition, if suitable 

learning-stimulating tasks are not given “at the right moment, then some intellectual 

abilities may not have the chance to develop”(Sierpinska, 1994, p.140). Students need to 

be challenged during all years of education because “when the student comes to study 

mathematics at the university level, the propitious moment [in his/her development] 

would have passed, and it may be too late for the teaching intervention to have any 

effect” (Sierpinska, 1994, p.140). 

 Tasks which require finding multiple solutions present a challenge not only for 

students but also for their teachers. Besides a general direction to employ different 

representations of the same mathematical concept (NCTM, 2000), teachers are 

insufficiently advised how to incorporate multiple-solution tasks in their lessons and how 

to assess their students’ progress in solving them (Leikin&Levav-Waynberg, 2007). I 

suggest that familiarity of students with interconnecting problems during their entire 

educational process creates a culture of mathematical thinking that makes solving 
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multiple-solution tasks more accessible. Through interconnecting problem, students may 

acquire the habit of analyzing a given problem in multiple ways as a systematic approach 

to problem solving and learning mathematics.   

 In a way, the interconnecting problem approach complements the strand of 

problems approach (Weber et al, 2006; Powell et al, 2009).  The strand of problems 

approach uses isomorphic problems (English, 1993; Hung, 2000; Maher & Martino, 

1996; Sriraman, 2004b), which appear to be different but employ the same underlying 

mathematical structure, and allows students to develop “problem-solving schemas within 

a specific mathematical domain” (Powell et al, p.139). Both approaches employ Bruner’s 

proposal of spiral curriculum, the view that curriculum should revisit basic topics and 

ideas learned over an extended period of time. This proposal correlates with the 

phenomenon of the spacing effect found in studies of memory: learning of fewer items in 

a longer period of time is more effective than repeated studies in a short period of time 

(Crowder, 1976). Thus reinforcement and revisiting is necessary in order to achieve 

fluency in understanding and comprehension of some material. But the revisiting can 

happen in different ways. In the strand of problems approach, the learner returns to the 

same mathematical idea or technique by solving a number of different problems. Here the 

challenge is to recognize that different problems have the same mathematical structure 

and thus the same method can be employed to solve all of them.  

In contrast, in the interconnecting problem approach the learner always deals with 

the same problem but employs different mathematical ideas and consequently, methods to 

solve it. This leads to establishing links between different topics learned in mathematics 

curriculum. In sum, the two complementary approaches are based on different paradigms: 

one problem linked with multiple ideas (or concepts) and many problems linked with one 

idea (or concept), which allows building a network of knowledge, especially if the 

approaches are used in a combination. This view is schematically presented in Figure 1. 
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Figure 1: Strand of problems and interconnecting problems generate a network of concepts and 

problems. 

In this respect, the interconnecting problem approach becomes an integral part of a 

teaching strategy aimed at creating a learning environment fostering mathematical 

intellectual growth and giftedness in particular.In the next section I give an example of 

interconnecting problem and examine its potential for learner’s development. 

3. An example of an interconnecting problem 

As many other good mathematical questions, this problem arose from practical 

needs in an engineering design project. It was conveyed to me in a conversation with my 

friend, who also mentioned that the majority of his colleagues, former university 

graduates, could not find a reasonable solution to it. I took it as a challenge to illustrate 

that the problem can be solved at different levels of grade school education and thus serve 

as an interconnecting problem for a learner of mathematics. 

Problem: Start with an arbitrary angle ABC and point E inside the angle. The 

problem is to draw a circle tangent to the sides of the angle and passing through the point 

E (that is we need to construct the center and the radius of the circle). 

In this section I will consider four possible approaches to this problem that can be 

applicable at different stages of learner’s cognitive development and related to different 

mathematical tools and representations of the question. The first approach is very 
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intuitive and can be demonstrated with manipulatives. This corresponds to enactive stage 

of problem representation (Bruner, 1966). Two other approaches, similarity-based and 

parabola-based, are geometrical approaches. They can be classified in Bruner’s 

terminology as iconic because they involve reasoning based on the properties of the 

drawn objects. The third method develops further the idea of parabola-based approach by 

moving it towards algebraic formalization and rigorous description of the solutions in 

terms of their coordinates. The local network of knowledge build around this problem 

over time can be schematically shown in the following figure. 

 

Figure 2: Approaches to the problem appropriate during several developmental stages. 

 

Below I present mathematical details pertinent to each of the approaches.  In this 

section I give a more algorithmic, step-by-step description of each method. The next 

section discusses ideas and concepts underlying these methods. 

 

A. Experimental approach:  

 

We bring into play a 3D model to help students understand that the solution to the 

problem exists. Consider a conical basket and imagine putting your finger on a point 

located inside the basket. Keeping the basket and the finger in the static position, ask if it 

is possible to find a ball or spherical balloon such that when it is placed in the basket the 

finger will touch the surface of the balloon. It is clear that if the balloon is too small, then 
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the finger will be far from its surface, while if the balloon is too big, the finger will 

deform or break the surface. Is it possible to get a balloon of the right size? The solution 

then is very intuitive: we place a small balloon and inflate it until it touches the finger. 

This experiment can convince students that the problem has a solution no matter what the 

size of the cone is and where the finger points. It does not define the radius and position 

of the center yet, but shows that it can be determined mechanically, doing the experiment 

with real manipulatives. Note that our original problem is a plane section of this 3D 

model.  

The next two approaches are purely geometrical. They can be discussed with a 

child who starts to notice and understand properties of drawn objects such as circles, 

triangles, tangent lines, perpendicular segments, etc. 

B. Similarity-based approach: 

For this approach I refer to Figure 3.  

 

Figure 3: Pure geometrical similarity-based approach. 

 

I. First we draw an arbitrary auxiliary circle tangent to the sides of the angle but not 

passing through the point E. We do it by the following steps: 



Kondratieva 

 

1. Draw an angular bisector of ABC; we know that all circles tangent to the sides of 

the angle have their centers on this bisector.  

2. We pick an arbitrary point F on the bisector as the center of the auxiliary circle. 

3. We drop a perpendicular from the point F to one of the sides of the angle, BC.  

4. The intersection point of the perpendicular and the side is called by G, and FG is 

the radius of the auxiliary circle.  

II. Our second step is to connect the vertex B of the angle and the given point E by a ray 

BE. Since point E lies inside the angle, the ray BE intersects our auxiliary circle in two 

points, called J and I. The segments FJ and FI are radii of the auxiliary circle. 

III. Our last step is to draw two lines through point E: one line is parallel to segment FJ 

and another is parallel to segment FI. These two lines intersect with the angular bisector 

BF at points K and H respectively. 

We claim that points K and H are the centers of the required circles; their radii are 

segments KE and HE respectively.  

This method is not applicable if E lies on the bisector BF or on one of the sides of 

the angle. The latter case is discussed in (Jones, 1998) along with an analysis of students’ 

approaches to solve the problem. In the special case when E lies on the bisector BF we 

follow another approach, which is in fact easier (see Figure 3a).  
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Figure 3a. Special case: point E lies on the angle bisector. 

 

First, we draw a line perpendicular to BF passing through point E. This new line 

intersects the side BC at point M. We put points L and N on side BC such that 

LM=ME=MN. Two lines perpendicular to the side BC and passing through points L and 

N intersect the angular bisector at points K and H respectively. These are the centers of 

the required circles. Similarly, if E lies on one of the angle’s sides, say, AB, we find the 

center of the circle as an intersection of the angular bisector BF and the line 

perpendicular to the side AB and passing through E. 

C. Parabola-based approach: 

I. We first draw the angular bisector of ABC. 

II. Our second step is to draw a parabola with focus at given point E and the 

directrix being one of the angle’s sides, say AB. Recall that parabolais the set 

of points which are equidistant from given point (called focus) and a given 

line (called directrix). Thus we draw it in the following way (Figure 4): 
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Figure 4: Drawing a parabola with focus at E and directrix AB. Here EF=FD 

1. Take an arbitrary point D on side AB. 

2. Draw a perpendicular to the side AB through point D. 

3. Draw a perpendicular bisector to the segment ED. 

4. These two lines intersect at a point F which lies on the parabola. 

5. As D moves along the line AB, the intersection points form the parabola. 

The parabola is a locus of centers of all circles which pass through point E and are 

tangent to the side AB. This parabola intersects with the angular bisector at two points, 

call them H and G (Figure 5). We claim that these two points are the centers of the circles 

we need to construct. Note that the second step, the drawing of a parabola with given 

focus and directrix, can alternatively be performed with a help of special mechanisms 

(linkages) known to ancient Greeks and widely used in the Middle Ages (see e.g. 

Henderson and Taimina, 2005, p.300). Modern geometry software such as GeoGebra has 

this tool as a built in option. 
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Figure 5: Approach involving geometrical definition of parabola. 

 

The idea of the parabola-based approach could be converted into an algebraic method by 

a learner who knows how to describe geometrical objects such as lines and circles 

analytically, to reformulate the question in terms of related algebraic equations and solve 

those equations. We outline this approach in the following subsection. 

 

 

 

D. Algebraic approach:  

Let the angle measurement be , where  0 . Consider a coordinate system 

in which the angle is formed by the ray AB with equation 0y , 0x  and ray BC with 

equation )tan(xy   in the first quadrant or second quadrant (Figure 5a). Let a given 

point E lie inside the angles and have coordinates ),( 00 yx . We are looking for the 

coordinates ),( yx of the center of a circle which passes through E and is inscribed in the 

angle. As we previously observed, the center lies on the angular bisector, and thus we 

have one relation ,kxy  where ).2/tan(k The ray representing the angular bisector 
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lies in the first quadrant. Another relation comes from the observation that the distance 

between the center and point E must be equal to the ordinate of the center. Squaring both 

values, we obtain .)()( 22
0

2
0 yyyxx  We note that since both values, the distance 

and the ordinate, are nonnegative, squaring does not affect the roots of the equation. 

Now, the system of two equations leads to one equation with respect to the 

abscissa of the unknown center, .)()( 222
0

2
0 xkykxxx   After a simplification it 

becomes a quadratic equation 0)(2 2
0

2
000

2  yxkyxxx , and thus we find two 

possible solutions )1(2 22
00000  kyykxkyxx , which correspond to the abscissas 

1x  and 2x  of the centers H and K of the two circles. Consequently, the ordinates 1y  and 

2y  of the centers are ).)1(2( 22
00000  kyykxkyxkkxy By construction we 

have 1y =EH and 2y =EK. An analysis of these formulas reveals the cases when there is 

only one solution possible: when point E lies on the side of the angle, that is either 00 y  

or ).tan(00 xy   In the first case, the center has coordinates ),,( 00 kxx  and in the second 

we get )).1/()1(),1/()1(( 22
0

22
0 kkkxkkx   

Also, note that the formula simplifies when point E lies on the angular bisector, 

i.e. okxy 0 . Then we obtain )11( 22
0 kkkxx  , )11( 22

0 kkkkxy  . 

This approach is essentially an algebraic realization of the second geometrical 

approach, C, based on the intersection of a ray with a parabola.  
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Figure 5a: Algebraic approach: Graphs in the coordinate plane. 

The parabola, which consists of centers of all circles passing through E ),( 00 yx and 

tangent to the ray 0y , 0x has equation 2/)2/()( 00
2

0 yyxxy  because its focus 

lies at E and the x-axis is its directrix. Together with the equation of the ray ,kxy  this 

yields exactly the same quadratic equation as we have analyzed above in approach D. 

 

4. Discussion of the key ideas of each of the four approaches. 

Gifted students often grasp the formal structure of the problem and produce their 

solutions from exploration of certain key ideas associated with this perceived structure 

(Krutetskii, 1976). Polya (1973) distinguishes between the stages of designing a plan in 

problem solving and implementing the plan. The design is based on the conceptual grasp 

of the problem situation, whereas its implementation requires more of instrumental 

knowledge. Since identification of concepts and ideas relevant to a given problem is 

essential for the solvers’ success, training of able students must include a deep analysis of 

each solution accompanied by the explicit identification of its main ideas.  Observe that 

approaches B, C, and D, if presented to a student as such, will indeed guide him/her to 

the right answer. Yet, without an appropriate reflection by the learner, without 

identification and understanding of the reason for each step of the construction, the 

solutions remain useless for learning to solve problems in general.  In this section I 

listsome ideas and concepts associated with more algorithmic step-by-step solutions 

presented in the previous section. 
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The approach A based on the experiment with an inflating balloon is not quite a 

solution of the problem but it plays an important role in the exploration, visualization and 

internalization of the situation. It shows that a solution exists and can be found as a result 

of a continuous process. Embedding this problem in 3D, we allow for a physical 

realization of the question. Similarly, using modern dynamic geometry (or engineering) 

software one can easily perform the task approximately just by a trial and error method in 

the interactive 2D environment. The size and position of the circle can be continuously 

adjusted in order to obey the requirements of the problem. Most of students (and 

engineers!) would employ this approach sufficient for a particular configuration. Thus it 

may take some effort to convince them to find a solution for a general configuration 

based on mathematical concepts and ideas. Some of them are as follows. 

Each of the other three mathematically more advanced approaches B, C, and D 

uses the fact that the center of the circle inscribed in an angle lies on the angular 

bisector. This observation is essentially based on one’s embodied knowledge because it 

refers to the axial symmetry of the geometrical figure and may be demonstrated to a child 

by folding the picture along the angular bisector.  In addition, every approach has its key 

mathematical ideas, which I outline below.  

The fact that similarity results from dilatation (or uniform scaling) is the key idea 

of the first geometrical solution (approach B). Figure 6 shows two circles inscribed in an 

angle. An inner ray started at the vertex of the angle intersects each of the circles in two 

points, I, J and K, L respectively. Triangles IJD and KLF, formed by the points of 

intersection with the ray and the centers D and F of the circles, are similar. Again, one can 

appeal to the embodied cognition, the natural sense of geometrical perspective, to view 

the second circle as a magnified copy of the first. This view implies that the sides of the 

triangles are parallel, which forms the basis for the construction employed by approach 

B.  
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Figure 6: Two similar triangles IJD and KLF viewed as a result of dilatation. 

The following key ideas form a foundation for the solution with a parabola 

(approach C): the set of all circles inscribed in an angle form a family; their centers lie on 

the ray which is the angle bisector. Similarly, the set of circles passing through E and 

tangent to one side of an angle form another family; their centers lie on a parabola with 

focus at E and the directrix being the side of the angle. The center of the required circle is 

at the same distance from the angle’s sides as it is from the given point E, thus the 

elements common to both families give the required circles. 

The algebraic solution (approach D) is based on the following key ideas: In an 

appropriate system of coordinates, an equation of the angular bisector involves a 

homogeneous linear function with slope expressed via the value of given angle. The 

distance between two points given by their coordinates is calculated by the Pythagorean 

Theorem. This leads to the equation of a circle, which is a set of points equidistant from 

one given point, its center.  In order to find intersection points of two curves, one needs to 

solve a system of equations describing the curves. 

Note that in this paper I only listed elementary solutions accessible for students in 

grade school. One may also identify some approaches from university mathematics 

curriculum, e.g. methods of complex analysis, relevant to the problem. But even if solved 

by elementary methods, we see that the problem offers a range of mathematical ideas to 

be explored. These ideas become connected as learners discover them one by one in a 
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course of continuous engagement with the problem. Furthermore, this long-term 

commitment to the same problem helps to develop students’ “capacity for work on one 

interesting problem for a long period of time”, which was found to be one of the 

characteristics of “creative-productive giftedness in mathematics” (Velikova et all , 

2004).  If we want our students to make sense of mathematics “we cannot expect any 

brief program on problem solving to do the job. Instead we must seek the kind of long 

term engagement in mathematical thinking” (Resnik, 1988, p.58), and this thinking can 

be organized around an interconnecting problem, its possible solutions and their interplay. 

I conclude this section with an illustration of the effect of such an interplay or 

interconnectivity of ideas employed in different solutions. The following geometrical fact 

emerges from a comparison of approaches B and C. 

Theorem. Consider an arbitrary circle and parabola drawn in such a way that the same 

line is tangent to the circle and is the directrix of the parabola, and both the circle and 

the parabola lie on the same side from the line (see Figure 7). Pick arbitrary point A on 

this line. Let O denote the center of the circle and F the focus of the parabola. Assuming 

that line passing through point A and O intersects the parabola in two points, call points 

of the intersection D and E. Assuming that the line passing through point A and F 

intersects the circle, call  points of the intersection B and C.  Then segments FD and CO 

are parallel and so are segments FE and BO. 
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Figure 7: New theorem emerged from approaches B and C to the initial problem. 

Proving this statement would be a challenging task for a majority of secondary 

school students. It would constitute a good question in a mathematical contest and thus 

can be used for identifying and fostering mathematical giftedness. Note however, that the 

statement becomes obvious if one identifies points D and E in Figures 7 and 6 with points 

H and K in Figures 3 and 5, or in other words, if one connects the ideas learned in two 

approaches to our initial problem. We leave it for the reader to reproduce the proof in full 

details. While doing this, the reader is advised to focus on his/her own experience and 

observe how familiarity with an interconnecting problem may lead to understanding of 

new mathematical facts in the process of rewiring various mathematical ideas.  

 

5. Teaching issues related to interconnecting problems 

Mathematics’ teachers can play a pivotal role in helping students make connections. 

Teachers’ commitment to this role is reflected in how they select curriculum materials, 

express personal interest in solving problems, explore and learn new connections in 

mathematics, negotiate meaning, and search for adequate pedagogical approaches 

(Koshy, 2001, p.123). The success of the interconnecting problems approach 

implementation depends on mathematics teachers’ readiness to implement it in general, 

and as a method of nurturing mathematical talent, in particular.  
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Today’s teachers have access to many problems and mathematical activities 

through books, Internet, journals, conferences, and other channels. Thus, it is 

unreasonable to say that the teachers are in need of more problems. But precisely because 

the number of available problems is large, teachers necessitate a systematic approach 

which would help them select problems appropriate for creating a coherent and connected 

representation of mathematical ideas for their students. By making this choice teachers 

would need to deal with such issues as ensuring that problems make mathematical sense, 

are clear and non-ambiguous. But the real challenge the teachers face is not just to pick a 

good problem and discuss it with the students, but also let the students experience 

usefulness of previously learned methods as well as develop an understanding of needs 

and possibilities of more advances approaches. Interconnecting problems also allow 

teachers to form a strategic vision and use it in their choice of tasks and actions in a 

classroom. 

However, to be able to successfully implement the interconnecting problem approach, 

and especially if teaching a gifted group, teachers would benefit from (Barbeau et al., 

2010): 

 Having personal experiences of problem-solving (in particular, having experience 

with multiple-solution connected tasks and ability to identify the place of each 

solution within mathematical curriculum) and investigations to draw upon. This 

would also help teachers to distinguish the markers of giftedness from just getting 

good marks in standard assessments or memorizing and following procedures 

diligently.  

 The ability to accept that some of the pupils they encounter will indeed be quicker 

and more intelligent than they are, but also that they have a role in nurturing 

whatever talent they find; put more emphasis on modeling the process of problem 

solving by their own example of thinking out loud rather that just providing 

student with information and techniques; 

 Becoming familiar with the resources so that they can orchestrate a program that 

will benefit their pupils, and having peers outside the school available for advice, 

assistance and mentoring. All of these presuppose a level of self-confidence that 

many teachers lack; 
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 Having administrative support for working with the same group of students for a 

longer period of time. It is possible that a proper assessment of giftedness requires 

contact over a long time, as the teacher needs to understand how a given student 

thinks. Instead of having a new teacher each year at school, perhaps pupils need 

fewer teachers, each for several years. This allows a dynamic to be created 

between the teacher and the class and allows the teacher to get to know the 

student in a way not possible over a single year. 

 

In relation to this new approach, it would be helpful to find out what teachers’ 

views are on good mathematical problems, what they value, how they select questions for 

their students; what their beliefs about useful learning recourses are and how close are 

teachers’ descriptions of good problems to the idea I am developing in this paper. In 

short, the following two questions are essential for the successful use of the approach: (1) 

Would practicing teachers identify interconnecting problems as good problems? (2) 

Would teachers be able to see good problems as interconnecting ones?  A discussion of 

teachers’ perspective on interconnecting problems goes beyond the scope of this paper. 

Further investigation of teachers’ readiness to implement the approach and their related 

understandings, knowledge, perspectives and experiences will provide some empirical 

evidence of benefits of proposed approach and guide its effective implementation in 

practice.  

 

Conclusion 

Being an instructor of mathematics, I often find myself leading a classroom 

discussion around problems illuminating the essence of a mathematical method. Some of 

the problems I bring into play appear to be universally useful in a variety of courses. 

Students attending my classes enjoy recognizing them and comparing how different ideas 

and techniques can be applied to address the same mathematical question.  My 

observations suggested identification of problems useful for systematical use in various 

university level courses. Similar practices are discussed in literature. For example, 

Mingus (2002) refers to “calculation of n-th roots of unity” as a problem which 

“encourages students to see connections between geometry, vectors, group theory, algebra 
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and long division”.  By means of investigation of this problem in different courses 

“students were able to review concepts from previous courses and improve their 

understanding of the old and new concepts” (Mingus, 2002, p.32). Further discussion 

reveals that “proving identities involving the Fibonacci numbers provide a solid 

connection between linear algebra, discrete mathematics, number theory and abstract 

algebra”.  In my view, these are examples of interconnecting problems.  The practice of 

using such problems effectively responds to the proposal that students’ achievements at 

university level courses are greatly influenced by the degree of interconnectedness of 

their basic mathematical knowledge, in particular, by connectedness between 

mathematical terminology, images, and the properties of the objects represented by these 

terms (Kondratieva & Radu, 2009). My own experiences resonated with like-minded 

instructors’ practices led me to the formulation of the approach described in this paper, 

which I propose to apply to the whole mathematics curriculum with particular 

consideration of the needs of gifted students. 

Modern curriculum is moving from a formal approach towards more exploration-

based and inquiry-based study of mathematics. While making connections and multiple 

representations of mathematical ideas are recognized as primary goals in teaching and 

learning mathematics, it is not always clear how teachers can implement this agenda. 

House & Coxford (1995) argued that presenting mathematics as a “woven fabric rather 

than a patchwork of discrete topics” is one of the most important outcomes of 

mathematics education. However, there is also a need for practical teaching strategies 

“for engaging students in exploring the connectedness of mathematics” (House & 

Coxford, 1995, p. vii).  

The interconnecting problem approach is one of such strategies. I hope that this 

article shows the potential of interconnecting problems and provides some practical ideas 

for teachers who pursue this direction in mathematics education.  

I suggest that the use of the interconnecting problem approach at different stages 

of students’ cognitive growth can foster the intellectual ability of the best students, 

identify mathematically-able students and engage them in analysis of connections 

between various ideas and methods. In addition, the application of different methods to 

the same mathematical problem throughout the years of schooling can: 
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 save classroom time devoted for exploration in high school by having necessary 

investigations and hands on experiences in earlier grades; 

 foster earlier transitions to the study of algebraic methods by means of reference 

to pictorial or other previously employed representations of the problem;  

 motivate students through freedom of exploration and experimental observations;  

 improve students’ logical skills  by letting them reason in familiar terms;  

 improve retention of basic facts by using them in the context of the problem and 

connect to other basic facts used in the same problem earlier;   

 develop students’ visualization skills and rely on their hand-on experience with 

geometrical objects when a more advances mathematical method is employed. 

 help with producing multi-step solutions by building connections between various 

topics. 

One may point at the obstacles the use of interconnecting problems may face 

because by the time students are in high school they may forget what they have done in 

previous years. Therefore, I emphasize the importance of very careful planning through 

the years of school curriculum for using of this approach.  Elementary and secondary 

level teachers may need to collaborate in order to identify useful interconnecting 

problems and outline the direction of emphasis through elementary grades required for 

the secondary level studies appealing to the same problem. Teachers need to ensure that 

the experience with interconnecting problems obtained in earlier years of education is 

memorable. For that, each investigation needs to be concluded with a concise summary 

of the key ideas and perhaps illustrated by special schematic images which students will 

associate with the problem in the future. The purpose of such images is to allow the 

students quickly evoke previous experiences associated with the problem and thus 

prepare them for learning new skill related to the old ones. As an example one may 

consider the notion of “procept” viewed as an amalgam of processes, an object emerged 

from them and the symbol which both represents and evokes it (Gray & Tall, 1994).  

Another example is the Shatalov’s “support signals” also helpful for “to reward 

successes—however small—and thus build up the child's natural enthusiasm for learning 

and confidence to be creative (Johnson, 1992, p. 59). 
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  To summarize, I am not claiming that the interconnecting problem approach is 

easy to implement but it is worth trying because students equipped with a comprehensive 

view of one interconnecting mathematical problem will likely exhibit more confidence, 

mathematical insight, and elegancy in problem solving than those who have studied an 

equivalent number of disconnected and arbitrarily contextualized mathematical facts.  

Teachers who care about coherent picture of mathematics they teach may observe more 

signs of giftedness in their classrooms. 
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