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This paper concerns teaching Euclidean geometry at the university level. 
It is based on the authors’ personal experience. It describes a sequence of 
learning activities that combine geometrical constructions with 
explorations, observations, and explanations of facts related to the 
geometry of triangle. Within this approach, a discussion of the Euler and 
Nigel lines receives a unified treatment via employment of a plane 
transformation that maps a triangle into its medial triangle. I conclude 
that during this course delivery, the role of constructions in dynamic and 
interactive environment was significant for students’ genuine 
understanding of the subject. In particular, it helped them to work with 
concrete figures and develop their own preformal approaches before 
learning general theorems and proofs. At the same time it was essential to 
follow such strategies as gradually lead students from basic to advanced 
constructions, from making simple analogies to generalizations based on 
critical ideas and unified principles, and emphasize structural 
interconnectedness of the problems each of which adds a new element 
into a bigger picture. 
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Introduction 

With rapid development of technology in recent years, the “dynamic and interactive 
mathematics learning environments (DIMLE), such as Cabri, GeoGebra, Geometer 
Sketchpad, Fathom and the like” (Martinovic & Karadag, 2012, p. 41) become accessible to 
more learners of mathematics.  However, the presence of technology by itself does not 
necessarily “produce what is expected” (that is, improve students’ understanding) and may 
have different cognitive influence on different students. “A deeper analysis is needed to better 
understand both the potential and limitations of computers” (Mariotti,  2002, p. 698). 

The problem of effective use of technology in mathematical education challenges researchers 
for many decades (Kaput & Thompson, 1994).  In particular, it is critical to know what are 
conditions of successful employment of DIMLE in educational processes, and what kinds of 
mathematical activities are beneficial for students’ understanding of the subject.  It is 
important to investigate the role of DIMLE in development of mathematical thinking, 
specifically, in view of mathematical problems that become affordable and thus open new 
dimension in learner’s advancement.  
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In this paper I attempt to address these questions. First, I discuss the role of experimental and 
explanatory phases in learning of mathematics. Then I talk about geometrical constructions as 
a type of problems that allow to bridge empirical and theoretical knowledge in geometry. 
Finally, I give an example from personal teaching practice of possible use of DIMLE: Topics 
of the Euler and Nigel lines are presented through construction and exploration. I conclude 
with a discussion of six pedagogical principles consistent with this teaching practice.  

More details related to the context of this study can be found in my paper (Kondratieva, 
2012), which highlights advantages of using basic geometric configurations (BGC) and 
dynamical invariants in teaching Euclidean geometry at the undergraduate level with 
assistance of DIMLE. In that paper, I conclude that “the freedom of experimentation offered 
by the use of DGE [dynamic geometry environments] needs to be very well structured by the 
instructor in order to help students to conceptualize geometrical knowledge at both intuitive 
and formal deductive levels” (p.212). Here I add further details based on my teaching 
experience gained through another year of the course delivery with focus on geometrical 
constructions. 

Experimentation, explanations and learning 

Many researchers (see e.g. Borwein, 2012) agree on the idea that modern technology 
such as computer algebra systems (CAS) and DGE allows to design, perform and validate 
experiments, which gives mathematics ‘almost empirical’ status (Arzarello et al, 2012, p. 
110).  Exploration of problems using physical tools is a widely known approach in natural 
sciences. However, while being not much developed, “exploratory approach to experiments 
that includes concept formation also pertains to mathematics” (Sorensen, 2010). 
Experimentation in CAS and DGE aims at such processes as pattern observation and 
generation of conjectures. While being an important part of mathematical research, learning 
through observation and conjecturing followed by explanations is also invaluable for student 
training (Jahnke, 2007) because it allows students to participate in the process of creation of 
knowledge and discover new mathematical relations. According to this approach, learning 
“starts with extended calculations, constructions and experimentations. In this way a ’quasi-
reality’ is created which allows for observing phenomena, discovering patterns, formulating 
conjectures, and last not least for explaining, that is, proving patterns.” (Wittmann, 2009, p. 
255). 

Yet, teaching approaches involving experimentation require thoughtful design. “Engaging 
students in situations which make them aware of the constructive character of mathematical 
activities, especially those involving conjecture and proof, possess complex 
challenges”(Durand-Guerrier at al, 2012, p.364). Indeed, pattern may reveal themselves and 
become ‘obvious’ in an appropriate representation. Nevertheless, the choice of representation 
and pattern interpretation are tasks that may require solid mathematical background.  
However, even if certain relations are easily observable, they call for further explanation and 
formulation of precise mathematical statements.  It appears that often finding explanations 
and proofs is a much more difficult problem, separate form the process of conjecturing and 
finding mathematical facts empirically.  

On that reason, it is arguable to what extend mathematical skills should be developed and 
practiced before students’ engagement in mathematical experimentation takes place. 
Educators, who rely on more ‘traditional’ approaches, insist on extensive practice with 
number facts, formulas, methods and exercises prior to an experimental phase of learning. 
Those who favour a constructivists view, believe that necessary knowledge are better 
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developed during such experimentations and solving problem that allow students to think, 
recall and sometimes to develop their own approaches to handle a question.  

The role of technology in this process is also disputable. While educators observe many cases 
when technology generates a mathematical insight (Adams, 1997), yet ‘the worriers … 
warned of a growing population of high school graduates, who, without their calculators 
would not be able to… multiply a number by 10, or make change for a dollar” (Fey, 2003, 
p.97), and that development of calculator-dependency or over-reliance on technology is a 
serious threat for learning of mathematics. Thus, the way technology is used in teaching is 
critical for possible outcomes. 

Theoretical justification: Preformal and potential proofs 

What are the conditions of a successful employment of an experimentation approach 
and technology in learning mathematics? One of the pioneers of computer assisted 
experimental learning, Seymour Papert, suggested that conducing a meaningful activity that 
engages students is the key defining the success of this approach. Further, it was suggested 
that the use of technology should be accompanied by its “internalization as psychological 
tools” (Arzarello et al 2012, p. 118). As well, technology should “foster cognitive unity” of 
empirically formed conjectures and possible links to their theoretical justifications.  
Otherwise, students produce “conjectures with no theoretical elements to bridge the gap 
between the premise and the conclusion of the conditional link” (Ibid, p. 118), which becomes 
an obstacle for a successful construction of an explanation.  “Conjectures should go beyond 
merely guessing … and encompass in some way a search for a structural explanation. Only 
then does it involve meaningful exploration and interpretation and a genuine need for 
validation.” (Durand-Guerrier et al, 2012, p. 357). In addition, a proof that looks for a 
structural reason and explanation of a phenomenon as opposed to a formal verification of it, 
often leads to a deductive generalization (DeVillier, 2012), that is, “generalisation of a critical 
idea to more general or different cases by means of deductive reasoning” (p.7).  

It was observed that learners benefit from writing detailed explanations. As long as these 
reasoning protocols (even being incorrect) present enough details to be checked by the learner 
or others, they form so-called potential proof. Quinn (2012) suggests that focus on writing 
potential proofs first, followed by their verification, helps students to “routinely get correct 
answers” (p. 237).  

Even if they are suitable in the first place, explanations arising from experimental 
mathematics often have status of preformal proofs, or a “chain of correct but not formally 
represented conclusions”, as defined in Blum and Kirsch (1991, p 187). Preformal proofs 
include visual, operative (Wittmann, 2009), and generic (Tall, 1979) proofs, which carry on 
the same logic as formal reasoning but reduce the level of abstraction by dealing with either 
visual images, or  ‘quasi-real’ objects, or ideas presented in generic examples (particular 
cases), respectively. While not being general, preformal proofs provide an important step on 
the way from empirical observation towards general proofs because they essentially capture 
“the main ideas of the complete proof in an intuitive and familiar context, temporarily 
suspending the formidable issue of full generality, formalism, and symbolism”(Leron & 
Zaslavsky, 2009, p. 56).  Formalization, verification and exposition of these preformal 
arguments for an external reader lead to a formal proof. 
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Geometrical constructions 

A process of geometrical constructions is often conjoint with preformal proofs 
because it results in concrete figures relying on general ideas. On that reason construction 
tasks were traditionally used for bridging theoretical and practical aspects of geometry. For 
example, theoretical notion of circle (as a collection of all points in the plane, equidistant 
from a given point) reveals its practical meaning in compass constructions that involve 
distances, e.g. construction of a triangle with 3 given segments as its sides. “Any successful 
construction corresponds to a specific theorem” (Arzarello et al, 2012, p.100) and it represents 
certain properties or relationships.  

Despite their fundamental importance for learning geometry, “constructions have recently lost 
their centrality and almost disappeared from Geometry curriculum” (ibid, p.101). They no 
longer belong to “the set of problems commonly proposed in the textbooks”(ibid, p.101).  
This situation has been criticized by some mathematics educators and scholars (see e.g. 
Tymoczko, 1998), particularly in view of presence of new construction tools offered by 
modern technology.  However, teaching of geometry still often suffers from either formal 
theoretical approach (e.g. two column proofs) or an utilitarian view emphasising 
memorization of formulas for area, volume etc. (Protasov  & Sharygin, 2004). 

 If the goal of study of mathematics is viewed as neither production of formal statements nor 
exclusively immediate practical application, but rather as advancing our understanding 
(Thurston, 1994), the students of mathematics should be exposed to appropriate experiences 
allowing them to develop, demonstrate, negotiate and convey such an understanding.  

In this paper I illustrate a possible scenario of how geometrical constructions may be included 
in lessons, especially if dynamic geometry software is involved.  

From Euler to Nagel line: a practical example. 

Euler line is an important object in the geometry of triangle. We will discuss the 
introduction of this topic using constructions in DIMLE.  A discussion of less traditional 
object, the Nagel line, will follow to illustrate how the ideas learned in the first part can be 
naturally developed to form a connected view on the topic. 

This section is based on my teaching experience in Euclidian geometry at the undergraduate 
university level. The sequence of tasks was given to students using two principles:  the 
complexity of tasks increased from simple to advanced, and solutions of later tasks relied on 
ideas and properties found in earlier tasks. In addition, some hints were available upon 
students demand. The students were required to construct an object with given properties and 
explain how and why their construction works. A number of potential (Quinn, 2012) and 
preformal (Blum and Kirsch, 1991) proofs were produced by students during this course. 
These students’ explanations were used by the instructor to improve and advance students’ 
understanding of relations between elements in a triangle. As well, discussions and reflections 
on students’ preformal proofs helped them to generalize critical ideas and transfer them from 
one problem situation to other cases. 

Basic constructions 

The first task was “using only compass and unmarked ruler, to construct an isosceles 
triangle”.  Figure 1 illustrates a student’s construction and its preformal justification. The 
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student wrote “I draw all points A’ that are distance 3 from A, and points B’ that are distance 
3 from B. The point C, where A’ and B’ meet gives an isosceles triangle ABC with 
AC=BC=3.”  Another student proposed a different approach: “Draw a circle with centre at C 
and radius R=1, and pick two arbitrary points A and B on the circumference. Since CA=CB is 
the radius, ABC is isosceles”.  While being generic (the students used concrete length of 3 
units or 1 unit), these constructions illustrate well the principal idea and can be easily 
generalized to an arbitrary case.  

 

Figure 1: Two ways to construct an isosceles triangle. 

While both being valid constructions of an isosceles triangle, the first method appeared to be 
more useful for solving the second task, namely, “to find the centre of a given segment, and 
then to describe the place of all points X in the plane equidistant from the two given points A 
and B, that is AX=XB.” The student who solved Task 1 by the first method observed: “in 
order to find the centre of the segment AB, I need to reduce the radii of the circles until they 
meet in just one point.” Figure 2 (left) illustrates this approach, which also brings the student 
to the realization that all points equidistant from the two given points form a straight-line.  

 

Figure 2: Two ways of finding all points equidistant from given points A and B. 

Thus, “it is sufficient to draw just a pair of circles, and line connecting their two points of 
intersection (e.g. CC_1) will cross the segment AB exactly at its mid-point E.” Another 
student arrived at the same algorithm after using the ‘trace’ function available in DIMLE and 
revealing the position of the point of intersection of two circles with centres at A and B 
respectively and radii controlled by slider (see Figure 2, right).  Then, the students were asked 
“to construct a line perpendicular to a given line L and passing through a given point X in the 
plane” (Task 3). The students observed that the line constructed in Task 2 must be 
perpendicular to the segment AB “because it is the axis of symmetry of this segment”. This is 
the key to construction in Task 3. “We first draw a sufficiently large circle with centre at X 
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and mark the intersection points with L as A and B. We have AX=XB and then continue as in 
Task 2, constructing perpendicular bisector of AB” (Figure 3, left). An additional assignment 
(Task 3a) was to “construct a line passing through a given point X and parallel to given line 
L”.  This can be done by performing Task 3 twice, that is, to construct L’ perpendicular to L 
and passing through X, and then draw L’’, perpendicular to L’ and passing through X. Since 
both lines are perpendicular to L’, L’’ is parallel to L (see Figure 3, right).  

 

Figure 3: Line passing through X and either perpendicular or parallel to a given line. 

While many Dynamic Geometry Environments have these elementary constructions build as a 
‘short cut’ option, I insisted on disabling these software functions at first and familiarising the 
students with these constructions by means of compass and ruler. Students’ were asked to 
produce drawings that depict geometrical statements along with auxiliary elements pertinent 
to their explanations. Such drawings are called basic geometric configurations (BGC) and 
discussed in (Kondratieva, 2011a). The use of basic geometric configurations associated with 
these elementary constructions was a deliberate choice, allowing students to internalize basic 
geometrical properties.  Later, when the constructions became more complex and crowded, 
the students were allowed to use the ‘short cuts’ of a dynamic environment. 

Our Task 4 was “to construct the centre of given circle”.  One participant described the 
process as follows: “If I had a circle cut from paper, I would fold it in halves to find the 
diameter. Then I would fold it in a different way to find another diameter, and the intersection 
of the folding lines will give me the centre. Now, what is the folding line? It is the line of 
symmetry of the circle. Thus, if I pick two arbitrary points on the circle, and find the line of 
their symmetry, I will get a diameter. My problem is as in Task 2: to draw a perpendicular 
bisector of a segment with end-points located on the circle.  Picking two pairs of such points I 
will get two intersecting diameters and complete the task.  Well, if I need to minimize the 
effort, I can actually pick only 3 points on the circle to form two pairs.” Refer to figure 4 
(left). 

 

Figure 4: The centre of a circle and concurrency of perpendicular bisectors in a triangle. 
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With this algorithm in hand, it is straightforward “to construct the circumcenter of a given 
triangle”, which was our Task 5 (see Figure 4, right). The students were also asked to explain 
the fact of concurrency of all three perpendicular bisectors in a triangle. In words of one 
student, “since O is equidistant from A and B by construction, as well as from B and C by 
construction, it must be that OA=OB=OC and so O is equidistant from A and C. But that 
means it lies on the perpendicular bisector to AC, and thus all three meet at O”.  

Medial triangle, M-transformation and the Euler line 

Next, the students were requested to construct midpoints A’, B’ and C’ (Task 2) of 
sides BC, CA and AB respectively, and form the medial triangle A’B’C’ (Figure 5).  The 
students were asked: “What relations exist between the medial and the original triangles?” 
One can observe that their sides are pairwise parallel (e.g. AB ||A’B’ etc) by Thales’ Intercept 
Theorem. Consequently, medial triangle is similar to the original one in the proportion 1:2. 
This and other properties of the medial triangle are central to our further discussion of the 
Euler line. Then students were asked to draw the altitudes in a given triangle (which can be 
done by using construction from Task 3).   

 

Figure 5: Medial triangle, the centre of mass G, and proof of concurrency of altitudes. 

While students observed the property of their concurrency using dragging feature, this fact 
needed an explanation.  Such an explanation does not easily emerge from the construction 
itself.  At this point I suggested constructing an ‘external medial triangle’, that is, bigger 
triangle, for which the given triangle is the medial one. Then students observed that the 
altitudes of the medial triangle are perpendicular bisectors of the external medial triangle. 
This led to an exclamation: “But we already know that perpendicular bisectors of a triangle 
are concurrent, thus the altitudes of A’B’C’ are concurrent as well” (Figure 5, right). This 
students’ conclusion is an important type of indirect reasoning, recognizing, in this particular 
case, the circumcentre of a triangle ABC as the orthocentre of it medial triangle A’B’C’ and 
thus proving the concurrency of altitudes in any triangle.  

Next, we observed that medians of a triangle are also concurrent, intersecting at the ‘centre of 
mass’ G.  That is a ‘physical’ explanation of this phenomenon, while the pure geometrical one 
usually is based on the Ceva theorem.  The medians of a triangle and its medial triangle lie 
(pairwise) on the same lines, which explains the fact that the centre of mass of a triangle 
coincides with one for the medial triangle.  

It was important to agree upon the notations.  Let A, B, C be vertices of a triangle, O be its 
circumcentre, H – orthocentre and G the centre of mass. As we introduce more points, all 
corresponding points in the medial triangle will be denoted by prime, for example A’, B’, C’ 
are vertices, H’ is the orthocentre, O’ is the circumcentre and G’ is the centre of mass in the 
medial triangle. In these notations we can summarise our findings so far: (1) BA’=CA’, 
AC’=BC’, CB’=AB’; (2) G=G’; (3) O=H’  (Fig. 5). 
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With these objects in hands, we discussed the transformation of the plane that converts a 
triangle into its medial triangle. For short, we will call it M-transformation.  Being a 
homothety with centre G and coefficient -0.5, M-transformation is a composition of two 
transformations, namely, 180-degrees rotation around the centre of mass G and shrinking the 
object to produce a twice-smaller triangle.  Both transformations were studied by using 
DIMLE.  Students observed that the image A’ of each point A in the plane lies on the line 
extension of segment AG, on the other side from G, twice closer to G: AG=2A’G. This 
observation immediately suggested that the centre of mass G divides all median in any 
triangle in the proportion 2:1, that is AG:GA’=BG:GB’=CG:GC’=2:1. From the property of 
M-transformation we know that H, G and H’ are collinear and HG=2H’G. But from the 
property H’=O we immediately conclude that H, G and O are collinear and HG=2OG in any 
triangle.  The segment HO is usually referred to as the Euler line (Figure 6).   

 

Figure 6: The Euler line connecting orthocentre H and circumcentre O. 

There is one more point on the Euler line, namely, the midpoint N (HN=ON), which also is 
the centre of the Nine Point Circle.  We are not going to discuss this circle here, just recall 
that it passes through the midpoints A’, B’, C’ and thus coincides with the circumcircle of the 
medial triangle.  This means that N=O’.  Applying the same reasoning as above, we see that 
by the property of M-transformation, points O,G,O’ are collinear and OG=2O’G.  Since 
O’=N, we have OG=2NG, which is consistent with the proportions HG=2OG and 
HN=NO=2NG.  

Construction of the Nagel line 

There is one more important point in a triangle, the incentre I. Before constructing of 
this point we discussed the task of constructing a point equidistant from the sides of a given 
angle, and then construction of the angular bisector (Figure 7, left).  Indeed, the incentre lies 
on the intersection of angular bisectors of a triangle (figure 7, right), and is equidistant from 
all three sides of the triangle (this distance is the in-radius).  This recognition explains the 
concurrency of the angular bisectors in any triangle, in a way similar to the explanation of 
concurrency of perpendicular bisectors, given above. 
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Figure 7: Angular bisector and incentre. 

Then we discussed less traditional geometrical objects such as cleavers and splitters. 

Cleaver is a segment that starts at a midpoint of a side and bisects the perimeter of a triangle. 
From this description students were asked to construct cleavers.  One student proposed the 
following construction for cleaver adjacent to B’: “Since B’ is a midpoint of AC, we need to 
extend AB by the length of BC and split the resulting segment in two halves. This can be 
achieved by the construction shown on Figure 8 (left). Indeed, we see that AD=AB+BD, and 
J is the midpoint of AD, so B’J divides the perimeter in halves.”  That figure suggests that the 
cleaver B’J  is parallel to the angular bisector of angle B. This fact can be explained as 
follows. First, B’J is parallel to DC, as a midline in ADC. Second, angle ABC =180-
DBC=2BDC. Therefore, the angular bisector of ABC is parallel to DC and thus to B’J as 
well.  

 

Figure 8: Constructions of clever B’J (left) and splitter BF (right). 

By the same type of reasoning as before, students concluded, “since cleavers of the original 
triangle ABC are the angular bisectors of the medial triangle, cleavers of any triangle are 
concurrent”. The point of concurrency is called Spieker point and denoted by S. We can 
express this fact in a formula: S=I’.  

Since we know that I, G and I’ are collinear with property GI=2GI’, we conclude that I, G and 
S are collinear with GI=2GS. This configuration is similar to the Euler line and is called the 
Nagel line (Figure 9). Nagel line also contains so-called Nagel point W. For completeness of 
this presentation we will define the Nagel point and outline its properties. First we introduce 
splitters as segments starting at the vertex and bisecting the perimeter. The task is to construct 
splitters and observe their concurrency.  One way to construct a splitter is shown on Figure 8 
(right): “we draw two circles with centres A and C and radii AB and CB respectively. These 
circles intersect the extension of AC at points D and E. If F is the midpoint of DE, then BF is 
a splitter”.  This construction allows to find the lengths of AF=DF-AB=p-c and FC=FE-
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BC=p-a in terms of triangle’s sidelengths AB=c,  AC=b, BC=a and semi-perimeter 
p=(a+b+c)/2.  Constructions of splitters associated with the other two vertices leads to similar 
algebraic expressions, and the concurrency of splitters easily follows from Ceva theorem. 

The point of concurrency of splitters W is called the Nagel point. It can be observed in 
DIMLE that W lands on the Nagel line passing through I, G and S. In addition, GW=2GI.  

 

Figure 9: The Nagel line connecting the incentre and Nagel point. 

The latter property can be proved by use of similar triangles and algebraic calculations. By M-
transformation, this property immediately implies that I=W’, that is, the Nagel point of the 
medial triangle coincides with the incentre of ABC. 

Note that this situation differs from several previous examples because the angular bisectors 
of ABC have nothing to do with the splitters of A’B’C’. On the other hand, splitters 
correspond to the points of tangency of escribed circles of ABC with its sides:  segment AT is 
a splitter in ABC if and only if T is the point of tangency of corresponding escribed circle 
with the side BC (see Figure 10, left).  It appears that if R is a point of tangency of the incircle 
with side BC, then CR=BT. From the above construction we can also observe that if AT and 
BS are two splitters then AS=BT (because BT=CR=CP=AS). This observation becomes 
important in the following proof.  

 Indeed, instead of proving that GW=2GI and concluding that I=W’, we can proof that two 
splitters A’E’ and C’D’ of triangle A’B’C’ and angular bisector of angle ABC are concurrent 
(Figure 10, right). Using the property of splitters A’D’=C’E’, and two pairs of similar 
triangles C’W’E’, FW’A’, and A’D’F, BC’F, we obtain that 
BF:BC’=A’F:A’D’=A’F:C’E’=FW’:W’C’. The relation BF:BC’= FW’:W’C’ implies that 
BW’ is angular bisector in C’BF and thus W’ lies on the angular bisector of ABC.  
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Figure 10: Splitter AT and inscribed and escribed circle (left); a proof that W’ lies on the 
angular bisector of ABC (right). 

This argument can be applied to another pair of splitters and corresponding angular bisector 
proving that splitters of A’B’C’ and angular bisectors of ABC all meet at one point, that is, 
I=W’.  

Concluding remarks 

In this section I discuss six major points emerged from my observation of students 
engaged in geometrical constructions while learning Euclidean geometry with assistance of 
DIMLE.  

Accuracy and confidence.  

The use of constructions in dynamic environments allows students at least to make 
neat and accurate figures. Also, it helps them to become more confident that they correctly 
understood geometrical rules and statements. In words of one student, “dynamic constructions 
allow observing various geometric relations (such as concurrency or collinearity). This leads 
to obtaining more certainty”.  

Exemplification, sense making, and need for theory. 

More importantly, constructions in dynamic environments allow exemplifying many 
ideas and making students’ thinking more concrete and explicit each time when they feel that 
it is necessary for their understanding of a more general discussion. Instructor has an 
opportunity to relate new general ideas to the constructions already familiar to students 
through their own effort, and work on perfecting of students’ potential or preformal proofs. 
Thus, communication with students becomes more meaningful and purposeful. During their 
work in DIMLE, students asserted that in order to be implemented in a dynamic environment, 
“constructions actually require knowledge of geometrical facts or basic geometric 
configurations”. Once students realize this, they start asking sensible questions and making 
conjectures based on their own dynamical models; students find similarities with previous 
examples and activate previously learned knowledge in order to complete and explain their 
constructions.  For example, as we see in the previous section, the notion of M-transformation 
relating a triangle and its medial triangle was essential for proving of several observable facts. 
For many students it was critical to be able to experiment with this concept in DIMLE before 
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they grasped the theoretical argument based on its properties. Once having learned the idea of 
M-transformation and the essence of the logical argument applied in case of Euler’s line, 
students started to produce deductive generalizations (DeVillier, 2012) extending this 
approach from explaining the Euler line geometry to exploration of the Nigel line.  However, 
the latter case introduced its own nuances and thus added some new ideas to ones learned in 
the former case.  

Emphasis on basic facts and constructions. 

A library of basic geometric configurations could be developed for students and by 
students. They recognize BGC (Kondratieva, 2011a) and refer to them as they progress in 
their learning. Once working on drawing BGC in the form of robust constructions with 
constrained dragging domains, students may also experiment with soft constructions (Healy, 
2000; see also discussion in Kondratieva 2012) in order to better understand the implicative 
nature of the statement they study.  By changing constrains students receive an option to 
compare various cases. For example, investigate what is common and what is specific for 
cases of obtuse, right, or acute triangles. The advantage of dynamic BGC drawn in DIMLE 
compare to static paper-and-pencil constructions comes from the fact that “perception of 
continual change in mathematical objects may affect the users’ understanding of 
mathematical concepts and lead them to develop a new type of learning” (Martinovic & 
Karadag, 2012, p. 47). 

Gradual development of a big picture. 

While performing geometrical constructions is helpful for some students, this 
assignment may make things more complicated for others.  Dynamic environments gives yet 
another representation of Platonic geometry, different from its paper-and-pencil or analytic 
versions, and thus requires special way of dealing with it and interpreting the results of 
dynamic experimentation.  If I want students to discover an explanation or proof by 
themselves, every such learning situation needs to be carefully designed.  As I illustrated 
above, students benefit from discussions of a chain of interrelated construction problems such 
that the theory gradually builds during the process of their completion and each problem adds 
a new idea to the entire picture.  The importance of building a genuine theoretical network as 
opposed to a memorization of a collection of isolated facts is discussed in the literature (see 
e.g. Hanna 2000, Jahnke 2007). 

Interconnectivity. 

As it was suggested by students, “constructions of an object in multiple ways help to 
connect several ideas”.   Moreover, many geometrical constructions can be treated as 
interconnecting problems (Kondratieva, 2011b).  First, they often allow simple formulation 
available for younger learners, and can be approached at an intuitive level, as students are 
familiar with the geometry of the world they live in. For example, finding the centre of a 
circle can be achieved by folding a paper circle. Second, different construction methods may 
emerge from using different geometrical tools as well as application of different geometrical 
theorems.  For instance, establishing correspondence between points of original and medial 
triangles gives two ways of their constructions. Also, as we discussed above a splitter can be 
drawn either by its definition  (Figure 8, right) or using the point of tangency with escribed 
circle (Figure 10, left). Third, some constructions may be pertinent to other branches of 
mathematics either as an auxiliary problem in solving some other tasks, or requiring 
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application of methods other than pure geometrical.  For example, all points and lines in a 
triangle, which we discussed in the previous section, can be expressed within the coordinate 
and linear algebraic methods, providing a link to analytic geometry.  

All these features allow mathematics teachers to use geometric constructions in various 
grades and courses and help students to connect their mathematical knowledge. Due to its 
affordances, such as dynamism and interactivity, the use of DIMLE may make these 
construction tasks more engaging and insightful for learners. 

Clarity and assistance. 

Problems should be clear and accessible but at the same time not over-simplified. In 
addition, in order to support students of various abilities, a system of hints and references 
should be incorporated in DIMLE-assisted construction tasks. More experienced and 
persistent students would occasionally rely on such help, while the novice learners would be 
given more assistance and guidance, which, however, should not be obstructive, leaving a 
room for students’ own ideas and approaches. Organizing problems in chains of interrelated 
constructing-and-proofing tasks, most of which allows multiple solutions, is one such 
possibility illustrated in this paper.   

References:  
Adams, T. L. (1997). Technology makes a difference in community college mathematics 

teaching. Community College Journal of Research and Practice, 21(5), 481-491. 
Arzarello, F., Bartolini Bussi M. G., Leung, L. Y. L., Mariotti, M. A., Stevenson, I. (2012). 

Experimental Approaches to theoretical thinking: Artefacts and Proofs. In Hanna, G., 
DeVilliers, M. (Eds.) Proof and proving in mathematics education. The 19th ICMI 
study (pp. 97-146), Dordrecht: Springer. 

Blum, W., Kirsch, A. (1991). Pre-formal proving: Examples and reflections. Educational 
Studies in Mathematics, 22(2), 183-203. 

Borwein J. M. (2012). Exploratory experimentation: Digitally-Assisted Discovery and Proof. 
In Hanna, G., DeVilliers, M. (Eds.) Proof and proving in mathematics education. The 
19th ICMI study (pp. 69-96), Dordrecht: Springer. 

DeVilliers, M. (2012). An illustration of the explanatory and discovery functions of proof. 
Pythagoras, 33(3), Art. #193, 8 pages. http://dx.doi.org/10.4102/pythagoras. v33i3.193   

Durand-Guurrier V., Boero P., Douek N., Epp S.S., Tanguay D. (2012). Argumentation and 
Proof in the Mathematics Classroom. In Hanna, G., DeVilliers, M. (Eds.) Proof and 
proving in mathematics education. The 19th ICMI study (pp. 349-368), Dordrecht: 
Springer. 

Fey, J. T. (2003). Computer algebra systems in secondary school mathematics education. 
Reston (VA): The National Council of Teachers of Mathematics Inc. 

Hanna, G. (2000). Proof, explanation and exploration: an overview. Educational studies in 
mathematics, 44, 5-23. 

Healy, L. (2000). Identifying and explaining geometrical relationship: interactions with robust 
and soft Cabri constructions In: Proceedings of the 24th Conference of the 
International Group for the Psychology of Mathematics Education, T. Nakahara and 
M. Koyama (Eds.) (Vol.1, pp. 103-117) Hiroshima: Hiroshima University. 

Jahnke H.N. (2007). Proofs and Hypotheses. ZDM Mathematics Education, 39:79-86. 
Kaput, J. & Thompson, O. (1994). Technology in mathematics education: The first 25 years. 

Journal for Research in Mathematical Education, 25, 676-684. 



Geometrical Constructions in Dynamic and Interactive… M. Kondratieva 

-63- 

Kondratieva, M. (2011a). Basic Geometric Configurations and Teaching Euclidean 
Geometry. Learning and Teaching Mathematics, 10, 37-43. 

Kondratieva, M. (2011b). The promise of interconnecting problems for enriching students’ 
experiences in mathematics. The Montana Mathematics Enthusiast, Special Issue on 
Mathematics Giftedness, 8 (1-2), 355-382. 

Kondratieva, M. (2012). How can dynamic geometry environment assist learning of 
geometrical proofs at the university level? (pp. 183-219). In D. Martinovic, D. 
McDougall, and Z. Karadag (Eds.) Technology in Mathematics Education: 
Contemporary Issues. Santa Rosa, California: Informing Science Press. 

Leron, U. & Zaslavsky, O. (2009). Generic proving: Reflections on scope and method. In F.-
L. Lin, F.-J. Hsieh, G. Hanna, M. de Villiers (Eds.) ICMI Study 19: Proof and proving 
in mathematics education (vol 2. pp. 53-58). Taipei, Taiwan: The Department of 
Mathematics, National Taiwan Normal University. 

Mariotti, M.A. (2002). The influence of technological advances on students' mathematics 
learning. In: Lyn D. English (Ed.) Handbook in International Research in Mathematics 
Education (pp. 695-708). Mahwah, New Jersey: Lawrence Erlbaum Associates 
Publishers.  

Martinovic, D., Karadag, Z. (2012). Dynamic and interactive mathematics learning 
environments: the case of teaching the limit concept. Teaching Mathematics and its 
Applications, 31(1), 41-48. 

Quinn F. (2012). Contemporary Proofs for Mathematics Education. In Hanna, G., DeVilliers, 
M. (Eds.) Proof and proving in mathematics education. The 19th ICMI study (pp. 231-
260), Dordrecht: Springer. 

Sorensen, H. K. (2010). Exploratory experimentation in experimental mathematics: A glimpse 
at the PSLQ algorithm. In B. Lowe & T. Muller (Eds.), PhiMSAMP. Philosophy of 
mathematics: Sociological aspects and mathematical practice. Texts in Philosophy 
(Vol. 11, pp.341-360). London: College Publications. 

Sharygin, I. F., Protasov, V.Yu. (2004). Does the school of the 21st century need geometry? 
Proceedings of the 10th International Congress of Mathematics Education. Technical 
University of Danmark, Lyngby, Denmark.   

Tall, D. (1979). Cognitive aspects of proof with special reference to the irrationality of √2. In 
D. Tall (Ed.) Proceedings of the 3rd conference of the International Group for the 
Psychology of Mathematics Education (pp. 206-207). Warwick, UK: University of 
Warwick.   

Tymoczko, T. (1988). New directions in the philosophy of mathematics (2nd ed). Basel: 
Birkhauser. 

Thurston, W.P. (1994). On Proof and progress in mathematics. Bulletin of the American 
Mathematical Society, 30(2), 161-177. 

Wittmann, E.Ch. (2009). Operative proof in elementary mathematics. In Lin, F.-L., Hsieh, F.-
J., Hanna, G., DeVilliers, M. (Eds), Proceedings of the ICMI Study 19: Proof and 
Proving in Mathematics Education (vol. 2, 251-256). Taipei: National Taiwan Normal 
University press.   


