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Mathematicians have always recognized geometry as an important source of meaning in mathematics
(Hilbert & Cohn-Vossen, 1952). Mathematics educators also regard geometry as “a natural area of
mathematics for the development of students’ reasoning and justification skill” (NCTM, 2000). The visual
aspect of geometric problems is their distinctive and invaluable property since geometric questions appeal
to solvers’ natural spatial intuition. While solving them, students need to become aware of geometric
properties and their relations, drawing conclusions not immediately evident in the diagram (Henderson &
Taimina, 2005), or learning from resolving apparent contradictions (Kondratieva, 2009).

Despite the fact that geometry offers a rich ground for developing mathematical intuition, students often
lack the ability to apply their knowledge in a problem-solving situation. Among others, the following
reasons were identified. The first relates to the very formal approach often adopted in the teaching of
geometry, including the memorization of formal definitions and an emphasis on formal proofs. Such an
approach often fails because “its deductivity could not be reinvented by the learner but only imposed”
(Freudenthal, 1971:418). The second relates to a rigid, utilitarian approach, which includes learning a list of
basic formulas for calculation of lengths, areas, and volumes, with emphasis on procedural knowledge.
Such an approach is often unsuccessful since “geometry is not a collection of definitions and formulas, but
the ability to see, imagine, and think” (Sharygin & Protasov, 2004:1).

This suggests that more emphasis needs to be placed on meaningful and creative use of geometric facts and
ideas, as well as on making connections between them. “When students connect mathematical ideas, their
understanding is deeper and more lasting, and they come to view mathematics as a coherent whole”
(NCTM, 2000:64). In addition, students need to be exposed to more challenging problems which would
allow them to see the power of geometric statements.

Many mathematics teachers find it difficult to ensure deep knowledge of geometry in students. From my
informal conversations with teachers 1 learned that “one of the main challenges in studying plane geometry for
students is making the connections between varions concepts”. In response to these teachers’ concerns, I discuss a
few geometric proofs as a way of illustrating interconnectivity of geometric knowledge, and their possible
exposition in an instructional setting. I pay special attention to basic geometric configurations (BGCs) -
fundamental geometric facts expressed in drawing. Some BGCs may be given names in order to help
students recall their images by association. For instance, names such as “bow-tie” and “Star-Trek” are
often used for images showing relations between central and inscribed angles. Basic geometric
configurations are the stepping stones to proving or solving geometric problems, and examples given in
this paper aim to illustrate this point. These examples also emphasize the following teaching actions which
I found to be useful in working with various geometry learners:

e Asking students to explain what relations they observe in a figure and what they think
about the role of the auxiliary lines drawn on the original figure.

¢ Constantly showing connections to already learned geometrical facts and focusing students’
attention on BGCs and key ideas used in a particular solution.

¢ Demonstrating several proofs or solutions of the same problem in. order to show
connectons between geometry, trigonometty and algebra.

s Directing students’ attention to the implications, converse and equivalence of statements.

e Helping students summarize their findings in the form of a mathematical statement.

The paper concludes with heuristic principles of problem solving in geometry which are applied
throughout this text.
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The amount of time and the degree of teachers’ assistance required to implement the examples shown in
this paper in a particular classroom will significantly depend on the students’ level of preparedness.
Nevertheless, the BGCs approach is worth trying as it helps the learner to develop geometrical
imagination while thinking in small connected steps, and moves away from both too utilitarian and too
formal expositions of geometry.

Basic geometric configurations: the unity of a statement, reason, and diagram

Many problems in Euclidean geometry are challenging for students because their solutions do not follow
an algorithmic process which can be learned step by step, but rather require an insight coming from
recognition and combination of several basic geometric configurations (BGCs) such as facts related to
isosceles triangles, similar triangles, or the right-angled triangle. In order to be able to recognise such basic
facts it is important to know their images along with proofs and reasons why they are true. My first
example of a BGC refers to the Zsosceles triangle defined as a triangle with two equal sides. Once students

recognize an isosceles triangle with 4C = BC (Figure 1) they know that it has two equal angles CAD and

CBD. Equity of two angles in a triangle implies equity of corresponding sides as well, presenting
equivalency of the two conditions.
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Fignre 1. Basic geometric configuration Figure 2. Basic geometric configuration
“isosceles triangle”. “radius bisecting a chord”.

This property reflects the axial symmetry of the figure with respect to line CD, which is an altitude, median
and angle bisector at the same time. The line of symmetry cuts any isosceles triangle into two congruent
right-angled triangles. This axial symmetry also implies the equality of the two medians, altitudes and angle
bisectors from vertices 4 and B, which could also be added if necessary.

The BGC shown in Figure 1 can be used as the basis for another important BGC, “radius bisecting a
chord is perpendicular to this chord” (Figure 2). Indeed, we have an isosceles triangle ACB, whete two
sides are equal to the radius of the circle with center at C and passing through 4 and B. The line segment
CD bisects the chord 4B, thus it is a median. But in an isosceles triangle the median is also an altitude, so
CD is perpendicular to 4B,

Viewing a tangent line as an extreme position of a chord, we can claim that “a line tangent to a circle is
perpendicular to its radius at the point of tangency”, CH 1L EF (see Figure 3). The axial symmetry of an
isosceles triangle and a circle remains to be a fundamental part of the BGCs depicted in Figures 2 and 3.

One figure may often serve as a tool, helping to recall and connect several basic geometric facts. For
example, one may observe that line segments A4B and EF in Figure 3 are parallel, which implies the
similarity of the right-angled triangles CBD and CFH. Here a teacher may re-emphasize the fact that in

Learning and Teaching Mathematics, 10, 37-43



Page 39

otder to establish the similarity of two right-angled triangles it is sufficient to identify only one pair of
equal acute angles.

Figure 3. Basic geometric configuration “tangent line to a circle”.

Two examples of guided discoveries with the use of basic geometric configurations

Recognition of an isosceles triangle is the key step in the following guided discovery episode. The dialogue
aims at the formation of another basic configuration, “right-angled triangle and circumcircle”.

Figure 4. BGC “right-angled triangle and circumcircle”: Proof of Theorem 1.

Students Anne and Cecile are given the diagram shown in Figure 4. The dialogue that follows resembles
teacher-student interactions occurting during our training sessions for regional mathematics competitions.
While the amount of teacher’s assistance may vary depending on students’ mathematical background and
ability, focusing students’ attention on BGCs is central to the approach endorsed in this paper.

Teacher. What do you see?
Anne: 1 see a triangle inscribed in a circle. The centre O of the circle lies on the side of the triangle. The

centre O is the midpoint of the side AB. The centre is also connected to the third vertex of the triangle.
AO = OB = OC and they are all equal to the radius of the circle.

Teacher. Good. What else can you say about this triangle?

Anne: AABC looks pretty arbitrary to me, but ABOC and ACOA are isosceles.

Teacher: Look more carefully. Can you find the size of angle ACB?

Ane: All T can see is CAO = ACO =a and CBO=0CB = B, s0 ACB=a + [ . It could be anything.
Teacher. Recall what you know about the sum of all angles in a triangle. Can you use it here?

Anne: In AACB we havea +(a+ B)+ f=180°. S0 a+ f#=90". Aha! AACB is right-angled!
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Here we see an example of a student using proof as a discovery of new fact. Alternatively, the student could

measure the angle using a protractor and find out that it is 90°. The teacher would then prompt her to
prove her statement in order to explain why it is true in general (see more on different roles of proof in de
Villiers (1999)).

Teacher. Very good! Now let us formulate a mathematcal statement. Let’s call it Theorem 1: If point C Jies

o the circamference of the circle with diameter AB then the angle ACB is the right angle. 'The proof of this theorem is
depicted in Figure 4. Notice that the line OC is drawn in order to reveal isosceles triangles. Now, do you
think that a converse of this theorem is also true?

Apnne: Let me think first what the converse statement would be. I need to “reverse” the if-then implication
in the original statement. Let us call it Theorem 2: If AABC is a right-angled triangle with right angle at vertex C
then point C lies on the circumference of the circle with diameter AB.

Teacher: For now it is just a conjecture. Can you prove it? Look at the diagram.

Apwnne: Let O be the midpoint of the hypotenuse AB. Then we need to show that the vertices .4, B and C
lie on a circle with centre at O. Let AB=c. We have AO=BO=c/2. It remains to show that
CO=c/2.

Teacker: Sounds like a plan. Remember that your triangle is right-angled. How can you use this
information?

Figure 5. BGC “right-angled triangle and circumcircle”: Proof of Theorem 2.

Seeing that the students were getting stuck, the teacher shows them the drawings in Figure 5 and asks if
the images are helpful to achieve their goal. After looking at the left image (Tigure 5) for several minutes,
Anne had her aha-moment.

Apmnne: 1 see a rectangle which consists of the initial right-angled triangle A4ABC and its rotation AABD .
Now, the diagonals of the rectangle meet at point O and they divide each other in halves so that all the
segments O.4, OB, OC and OD have the same length. This proves that all four points lie on a circle with
center O and diameter A4B, which is the hypotenuse of AABC .

Teacher: This is good! But can you justify that the quadrilateral ACBD is a rectangle?

Anne: 'This is because angles C and D are the right angles of a right-angled triangle, and each of angles B
and 4 is just the sum of the acute angles in the right-angled trangle A4BC , which also gives 90°.

Cecile selected the right image in Figure 5 and her reasoning required a little more assistance from the
teacher.

Ceale: Line MD is perpendicular to the side CA, and thus MD is parallel to the side CB. This means that
AAMD and AABC are similar right-angled triangles.

Teacher: Can you tell what the coefficient of similarity is?

Cecile: Since point M is the mid-point of the hypotenuse AB, A4ABCis twice the size of AAMD, so
CA=2DA and CB=2MD.
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Teacher. Now, what can you say about ACMA?

Cecile: 1 want to show that it is isosceles... And it is isosceles because AMDA and AMDC are two
congruent right-angled triangles, since they share one leg MD and the second pair of legs is equal as well
(DA = DC since CA=2DA). Thus their hypotenuses M.A and MC are equal, which proves that 4, B and
C lie on a circle with centre at M and diameter .4B.

Teacher: Very good. We have two proofs of this theorem, but there are many more. I can show you another
one which uses algebra and trigonometry so you can recall some formulas and practice you algebra skills as
well. My proofis as follows (referring to Figure 4):

If CAO=a then AC=ccosa. And now CO can be found from A4OC by the Cosine Law. Recall
that AO = ¢ /2.1 will let you to work it out.

2
c
Anne: 1 have CO = \/—0—4— +clcosta— 2%(0 cos@)cos @ ==5. How nice that the terms with & cancel

each other! This proves that CO= AO .
Teacher. Now, can you summarize and desctibe the result and Figure 5 in your own words?
Anne: T will call this figure “Hypotenuse of a right-angled triangle is a diameter of its circumcircle”.

These examples illustrate how the students were able to internalize basic geometric configurations during
their reasoning on diagrams with the guidance of a teacher.

Pythagorean Theorem as a basic geometric configuration

Most secondary school students know Pythagoras’ Theorem: a® +b* =c¢® where a and b are legs, and
¢ is the hypotenuse, of a right-angled triangle. Unfortunately, only a few of them are able to prove this
fundamental statement. The majotity of students simply give an example such as the famous 3-4-5 right-
angled triangle, 3> +4% = 5%, accompanied by the picture of a right-angled triangle with squares attached
to its sides. I would not regard this image as a basic configuration as long as it lacks an explanation of the
geometric facts. What follows are two examples of a proof of Pythagoras’ Theorem which generate the
basic geometric configurations depicted in Figure 6 and Figure 7 respectively.

Progf 1: Let ABC be a right-angled triangle and CD an altitude dropped onto the hypotenuse AB (see

Figure 6). Observe that angles DAC and DCB are both equal 90° — DBC . Thus triangles ABC, ACD
and CBD are similar triangles. Let BC =a,AC=b,AB =c,BD = f,AD = g. From the similarity of

AABC and ACBD we have £=i and thus a® =¢f . The similarity of AABC and AACD implies
c a

b? = cg . Thus we have a’ +b* =cf+cg=c(f+g)=c2_

Another proof of Pythagoras’ Theorem again uses similar right-angled triangles as well as a few
geometrical facts already discussed in this article. Students can be given Figure 7 and asked to find familiar
BGCs, list possible relations, and in particular justify the similarity of ACDB and ACBE . Teachers may
lead the students to the following way of reasoning and conclusion.

Figure 6. Similar right-angled triangles in the first proof of Pythagoras” Theorem.
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Proof 2: Let AABC be a right-angled triangle with CAB=a, CBA=90° ~a, AB=c , AC=b, and
BC =a. Points D and E lie on the extension of the side CA such that AD = AE = AB =c. Segments DB
and EB are drawn. The “right-angled triangle and circumcircle” configuration from Theorem 1 helps one
to see that ADBE is right-angled. ABAD 1is Zsosceles with BAD=180° —a . Thus, ABD=ADB=a/2.
In addidon:
CBE = DBE —CBA- ABD=90" - (90° —a)—a /2= /2

Now, triangles ADCB and ABCE are similar right-angled triangles because they both have an angle
a /2. The similarity implies that CD:BC =BC:CE . Expressing these segments in terms of the side
lengths of the original right-angled triangle gives CD=b+c¢, CE=c—b and BC =a. We thus obtain

b+c a

a Cc—

the relation , which simplifies to ¢ —b” =a” and thus completes the proof.

E
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Figure 7. A “right-angled triangle and circumcircle” configuration in a proof of Pythagoras’ Theorem.

Note that Figure 7 can also be used in a geometric proof of the following trigonometric identity:

b+c ccosa+c cosa+l
cot(ax/2) = = = =cota +coseca .

csing sina
Thus another mathematical connection can be established as a corollary to the second proof.

Concluding comments

A large class of problems in Euclidean geometry has the following structure: they describe a certain
configuration and then require showing that either some segments are equal, or specific angles have certain
measurements, or some relation holds. This situation puzzles an immature solver because the
configuration may seem arbitrary, it may allow a lot of freedom but nevertheless predicts a concrete
relation. Often a resolution comes from drawing an auxiliary line and recognition of a BGC which
embraces the explanation.

Problems with short solutions are very useful for learning to problem-solve in geometry. However, if only
those problems are discussed, students may be misled into believing that all problems in geometry have a
short solution based on an insight or a clever geometric construction. To avoid this misconception,
problems which require several-steps solutions must be discussed as well. Although they present a bigger
challenge, their presence in the learning process is important in activating learned knowledge and making
connections between several simple and basic facts.

In conclusion, I summarize several important heuristics for solving geometric problems applied during the
above discussion. Teachers may find them useful for both planning lessons in geometry and for
scaffolding students during their study of this subject.
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¢ Do not be afraid of geometric problems. Make as many observations about angles and segments as
you can. Some of them may be useful for your solution. Even if they do not directly lead to the
solution they help you to explore the “unknown territory”.

¢ Introduce notation and denote angles and segments’ lengths by letters. You can manipulate with
the letters even if their values are unknown. The goal is to find new algebraic relations between
different parts of the diagram.

e Recall basic geometric configurations and facts along with their proofs. The proofs may contain
mathematical ideas suitable for the problem you are solving.

¢ Keep solving problems and reflect on your own and others’ solutions. This will help you to
understand and remember fundamental mathematical facts, recognize basic geometric
configurations, and learn how several ideas work together.

e Even if you have a problem solved, look for an alternative solution and try to apply and interpret
newly learned material to the problems you have considered in the past. This will help to establish
connections between mathematical ideas and will thus strengthen your knowledge and skills as a
problem solver.
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TECHNO TIP

Providing quick access to frequently used text

If you have something that you type often then you can programme a shortcut using the
AutoCorrect feature. You can include formatting and even graphics. This can be used for exam
cover sheets, fax cover sheets, logos etc.

Select the text and then choose AutoCorrect from the Tools menu. In Word 2007 and 2010 you
will find this menu on the FILE — OPTIONS — PROOFING menu.

You can then type in the shortcut text that you wish to type when you want your selected text to
appear. Then click on Add and then OK. Now, anytime you need this text, simply type your
shorteut and BINGO - it will magically appear!
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