Geometrical sophisms and mathematical proofs

ICMI Study 19 *Margo Kondratieva* Memorial University, Canada

May 10-15,2009

...as perceived from

substantive mathematical meaning or adequacy to **physical model**. **Proving and trusting**

*For some students proving is a formal ritual;

*For many students trusting or believing [a statement] comes with examples, figures, analogies etc.

Deductive thinking explained via:

*Factual knowledge (recall by analogy) ...but how we derive knew knowledge?

Formal rules (logic)... but does it reflect the process?

Mental Models

Visual Mental models

*Are essential for deductive reasoning;

*****Each model represents a *possibility*;

The structure of the model captures the common features of different possible representations of the model;
 (Johnson-Laird, Byrne, Polk, Newell)

Theory of Visual Mental Models

* mental models explicitly represent only truth (memory is saved by not showing false statements);

* explains deductions about what is probable (probability is defined by the number of mental models which are in agreement with the conclusions).

Deduction is a justified conclusion.

If I am hungry then I have a snack;
If I have a snack then I have a light dinner

If I am hungry then I have a light dinner!

Visualization: area of the square

aa-bb=(a+b)(a-b)

Visualization in terms of areas

Pictures are good but...

May not cover all cases (e.g. negative a,b)
 They are not *precise* (in Platonic sense).

Simply presenting picture will not transfer an idea to the learner. One needs to explain the essential features and structure of the image. (Arnheim, Visual thinking. 1969)

Drawings and explorations

Geometric constructions with compass and ruler

*****Making conclusions from a drawing

Practice with geometry improves overall mathematical and *logical* ability

Areas are equal: 64=65

Paradoxes

Surprise and force to find an error
 Develop a need for logical sequence of thoughts

Help to examine links between given information and conclusions

*Force to review basic ideas and principles

Pictures and reality

Impossible figure...

Extra square?

Explore and conclude...

Unexpected connection...

*****The sides are 1,2,3,5,8,13...

Fibonacci numbers
|F(n)F(n+1)-F(n-1)F(n+2)|=1
5*8-3*13=1
Slopes are close: 5/13 and 3/8 approx 0.38
Visual illusion!

Formal proof
Rigor
Completeness
Books, papers
Symbolic
Definition - Statement

Informal proof
Intuition
Construction
Work in progress
Inactive- Iconic
Mental images

Conclusion:

Geometrical sophisms force the learner to *** inspect** an impossible picture, *** reveal the true structure** and properties, *** adjust** the primary **mental model** and **prepares the learned to make a deductive**

step.

Thank you and questions

