
This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research
and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright

Author's personal copy

Discrete Applied Mathematics 157 (2009) 1913–1923

Contents lists available at ScienceDirect

Discrete Applied Mathematics

journal homepage: www.elsevier.com/locate/dam

Edge searching weighted graphs
Öznur Yaşar ∗, Danny Dyer, David A. Pike, Margo Kondratieva
Department of Mathematics and Statistics, Memorial University of Newfoundland, St. John’s, NL, Canada

a r t i c l e i n f o

Article history:
Received 26 November 2007
Received in revised form 3 September 2008
Accepted 25 November 2008
Available online 6 January 2009

Keywords:
Edge searching
Monotonicity
Pathwidth

a b s t r a c t

In traditional edge searching one tries to clean all of the edges in a graph employing the least
number of searchers. It is assumed that each edge of the graph initially has a weight equal
to one. In this paper we modify the problem and introduce the Weighted Edge Searching
Problem by considering graphswith arbitrary positive integerweights assigned to its edges.
We give bounds on the weighted search number in terms of related graph parameters
including pathwidth. We characterize the graphs for which two searchers are sufficient to
clear all edges. We show that for every weighted graph the minimum number of searchers
needed for a not-necessarily-monotonic weighted edge search strategy is enough for a
monotonicweighted edge search strategy,where each edge is cleaned only once. This result
proves the NP-completeness of the problem.

Crown Copyright© 2008 Published by Elsevier B.V. All rights reserved.

1. Introduction

The graph searching problem is an extensively studied graph theoretical problem. Its origins date back to the late 1960s
in works of Parsons [14] and Breisch [4]. It was first faced by a group of spelunkers who were trying to find a person lost in
a system of caves. They were interested in the minimum number of people they needed in the searching team.
Assume that we use a graph to represent a system of gates (which correspond to vertices) and pipes (which correspond

to edges) where pipes may have different priorities (depending on size or location). Let us consider these pipes to be full
of poison gas. Then we can think of edge-searching as cleaning the system of poison gas. If one gate is left open and if gas
leakage can occur through that gate then it will contaminate every pipe that it can reach; that is, all connected pipes with
open gates. When a pipe is recontaminated, it will do so to its capacity. That is, even if a recontaminated pipe had been
partially (or entirely) cleaned, it must now be fully cleaned again.
Consider a team of searchers and a finite connected graph Gwith positive integer weights which represent themaximum

amount of contamination of edges. We assume the graph to be contaminated initially and our aim is to decontaminate or
clean the whole graph by a sequence of steps. At each step we are allowed to do one of the following moves: (1) place a
searcher at a vertex, (2) remove a searcher from a vertex, (3) slide a searcher from a vertex along an edge, to an adjacent
vertex.
If a searcher slides along an edge e = uv from u to v, then the current positive weight of the edge e is decreased by one

if (i) another searcher is stationed at u, or (ii) all other edges incident to u have weight 0 and the current weight of e is 1, or
(iii) u is a leaf. When a searchermoves from a leaf u to an adjacent vertex, it is not possible to contaminate the graph through
u due to the nature of the system and hence we do not need to place a searcher at u.
If a searcher is stationed at a vertex v, then we say that v is guarded. If a path does not contain any guarded vertices,

then it is called an unguarded path. Assume that the weight of an edge e is decreased after some steps. Then we say that e is
clean if its weight is reduced to zero and partially clean otherwise. If there is an unguarded path that contains one end point

∗ Corresponding author. Tel.: +1 7097378733; fax: +1 709 737 30 10.
E-mail addresses: oyasar@mun.ca (Ö. Yaşar), dyer@mun.ca (D. Dyer), dapike@mun.ca (D.A. Pike), mkondra@mun.ca (M. Kondratieva).

0166-218X/$ – see front matter Crown Copyright© 2008 Published by Elsevier B.V. All rights reserved.
doi:10.1016/j.dam.2008.11.011

Author's personal copy

1914 Ö. Yaşar et al. / Discrete Applied Mathematics 157 (2009) 1913–1923

of a contaminated or a partially clean edge and one end point of e, then e gets recontaminated. If e gets recontaminated, its
weight goes back tow(e)which is its original value. If in the system there occurs a gap in which an intruder (which may have
a diffused form as in the gas leakage scenario) can enter a pipe (i.e. contaminate an edge), then we can no longer consider
that pipe as clean (and not even partially clean). Recontamination occurs instantly and there is no order of recontamination.
An edge search strategy is a combination of themoves defined above that reduces all edgeweights to zero.We say that the

graph is cleaned when the state of all edge weights being zero simultaneously is achieved. The problem becomes cleaning
the graph using the least number of searchers. Such a number for graphs with all edge weights initially equal to one is called
the search number of the graph and it is denoted by s(G).
We introduce a new version of edge searching called weighted edge searching. In our setting we allow the edge weights

to be arbitrary positive integers. We call a strategy to clean a weighted graph a weighted edge search strategy, and the least
number of searchers required in the strategy the weighted search number which is denoted byws(G).
Weighted searching is a reasonable extension of the searching problem, as in many ‘‘real-world’’ situations, an edge in

a graph may represent a pipe or a corridor. Traditional edge searching is not robust enough to deal with situations where
particular edges may be more important or may require more effort (be it cost or time) to be cleaned. To return to Breisch’s
original problem, a tunnel in a cave may be quite constricted, allowing only a single searcher through, or broad, requiring
several passes to search effectively.
A graph G is said to be k-searchable if s(G) ≤ k. Similarly, a weighted graph is said to be k-searchable if ws(G) ≤ k. It

has been shown in [13] that, finding whether a graph G is k-searchable, i.e. solving the EDGE SEARCHING problem for G, is
NP-complete. Our decision problem can be stated as below.
WEIGHTED EDGE SEARCHING:

Instance. A weighted graph G = (V , E, w) and a positive integer k.
Question. Is G k-searchable?

By transformation from MINIMUM CUT INTO EQUAL SIZED SUBSETS which is known to be NP-complete we see that
WEIGHTED EDGE SEARCHING is NP-hard. We will show in Section 5 that our decision problem is in fact NP-complete.
In some situations, we insist that once an edge becomes clean itmust be kept clean until the end of the searching strategy.

If a strategy follows this rule, then it will be called monotonic. If the monotonic strategy is for a weighted graph, then we
further insist that a partially cleaned edge will also not get recontaminated. The minimum number of searchers needed for
a strategy that is monotonic is denoted asms(G) for an unweighted graph and bymws(G) for a weighted graph. It has been
shown [3,11] that forcing the strategy to be monotonic does not change the search number, hence s(G) = ms(G).
If we are not allowed to remove a searcher from the graph, in which case the searchers will not be able to ‘‘jump’’ from

one vertex to another, then the strategy will be called an internal strategy [2]. If, on the other hand, the set of clean edges is a
connected subgraph of G after each step of the strategy, then the strategy will be a connected one. The relationships between
these different strategies is examined in [2].
A different weighted model where edges and vertices have dissimilar weights is considered in [1] for internal connected

search. Our model together with the rules of cleaning are entirely different from this model.
The problem and its variants are related to many applications such as network security [1]. It has strong connections

with the cutwidth of a graph which arises in VLSI design [5] and with pebble games [10]. Because of its closeness with the
layout problems, it is related to graph parameters such as pathwidth [7,9], bandwidth [8] and topological bandwidth [12].
In this paper we will first give the preliminaries and illustrate the problem by examples in Section 2. In Section 3, we

will give some results that bound the weighted search number, including a bound with pathwidth. Characterization of two-
searchable graphs will be done in Section 4. Section 5 is devoted to monotonicity. Finally, we mention some related open
problems in Section 6.

2. Preliminaries

In this paper, we will consider finite connected simple graphs unless otherwise stated. Definitions omitted in this paper
can be found in [16]. Given a graph G = (V , E), we denote its vertex set by V and edge set by E. A graph G = (V , E, w) is
called a weighted graph if each edge e of G is assigned a positive integerw(e) called the weight of e.
Given two weighted graphs G = (V , E, w) and G′ = (V ′, E ′, w′), if G and G′ have the same underlying graphs, i.e. V = V ′

and E = E ′, then G′ is said to be lighter than Gwhenw′(e) ≤ w(e) ∀e ∈ E.
We say that G′ = (V ′, E ′, w′) is a subgraph of G = (V , E, w) when V ′ ⊆ V , E ′ ⊆ E and w′(e) = w(e) ∀e ∈ E ′. For given

weighted graphs G = (V , E, w) and G′ = (V ′, E ′, w′), if V ′ ⊆ V , E ′ ⊆ E and w′(e) ≤ w(e) ∀e ∈ E ′ then G′ is a lighter
subgraph of G.
In order to define a minor of a given graph we need two operations: edge deletion, which corresponds to deleting an

edge e, and edge contraction, which corresponds to deleting an edge e = uv and identifying the vertices u and v. For given
graphs G = (V , E) and G′ = (V ′, E ′), G′ is called a minor of G if G′ can be obtained from G by a series of edge deletions or
contractions. Similarly, given weighted graphs G = (V , E, w) and G′ = (V ′, E ′, w′), we say that G′ is a lighter minor of G, if
G′ is a minor of G, considering the corresponding underlying graphs, andw′(e) ≤ w(e) ∀e ∈ E ′.

Author's personal copy

Ö. Yaşar et al. / Discrete Applied Mathematics 157 (2009) 1913–1923 1915

A multigraph is a graph which may have multiple edges, i.e. ∃e1, e2 ∈ E where e1 6= e2 but both have the same end
vertices. A reflexive graph is a graph which may have loops i.e. ∃e ∈ E where e = uu.
A path of length n, denoted as Pn, is a graph with vertex set V = {v0, v1, . . . , vn} and edges ei = vivi+1 for every

i = 0, . . . , n− 1, hence Pn = e0e1 . . . en−1. A suspended path in a graph G is a path of length at least 2 such that all internal
vertices of the path have degree 2 in G.
A path addition [16] to G is the addition to G of a path of length at least n ≥ 1, between two vertices of G introducing

n− 1 new vertices; the added path is called an ear. An ear decomposition is a partition of E into sets H0,H1,H2, . . . ,Hk such
that H0 is a cycle, and Hi is a path addition to the graph formed by H0,H1, . . . ,Hi−1.
A vertex is called a cut vertex if its removal makes the graph disconnected. A graph is biconnected or two-connected if it

has no cut vertices. A biconnected component of a graph is a maximal biconnected subgraph.

Theorem 1 ([17]). A graph is biconnected if and only if it has an ear decomposition.

The set of biconnected components of a graph G forms a graph, called the block graph which has as its vertices the
biconnected components and cut vertices of G, and there is an edge between two vertices if one of them is a cut vertex
and the other is a biconnected component containing that vertex.

Theorem 2 ([16]). The block graph of a connected graph is a tree.

Let w0(e) := w(e) denote the initial weight or contamination of the edge e. We denote the contamination of e at step i
of a search strategy aswi(e). Initially all edges are assumed to be contaminated, thereforew(e) ≥ 1 ∀e ∈ E.
Ifwi(e) = 0, then the weight of edge e is zero at step i and we say that e is clean at step i. Note that even if the weight of

an edge is zero at some step the edge may be recontaminated at a later point. A vertex uwill be said to be clean if all edges
incident to u are clean.
An exposed vertex is a vertex that has at least two edges incident with it, one of which is either clean or partially clean

and the other is not clean.
Note that for an unweighted graph G the weighted edge search number, ws(G), will be computed by taking all edge

weights equal to one. Similarly, given a weighted graph, s(G) will correspond to the search number of the underlying
unweighted graph. Observe that for any weighted graph Gwe have:

s(G) ≤ ws(G). (1)

Example 1 (Path of Length n). The search number is s(Pn) = 1 whereas

ws(Pn) =

1, ifw(e) = 1 ∀e ∈ E or when n = 1 andw(e) is arbitrary;
2, if n ≥ 2, ∃e ∈ E such thatw(e) ≥ 2 andw(ei) ≤ 2 where

i = 1, . . . , (n− 2), and whenw(e0) orw(en−1) are arbitrary;
3, otherwise.

Example 2 (Loop l). We know that s(l) = 2. For any edge weight we see thatws(l) = 2.

Example 3 (Cycle of Length n:). For every n cycle of length n, denoted as Cn, observe that s(Cn) = 2.

ws(Cn) =

{2, ifw(e) = 1 ∀e ∈ E;
4, if ∃e1, e2, e3 ∈ E, each of weight at least 3;
3, otherwise.

Remark 1. Note that edge searching a weighted graph is not the same as edge searching an unweighted multigraph where
each edge e of weight w(e) is replaced with w(e) parallel edges. One example is the path of length two where both edges
have weight 3. Then the corresponding unweighted multigraph, with 3 vertices and 6 edges has search number 3 whereas
the weighted graph has search number 2.

3. Bounds on weighted search number

In this section we will give results that relate the weighted search number with other parameters. First we will consider
the weighted search number of complete graphs. For n ≥ 4 we know that s(Kn) = n, [14].

Proposition 3. For n ≥ 4, we have

ws(Kn) =
{
n+ 1, when all edges have weight at least 3,
n, otherwise.

Author's personal copy

1916 Ö. Yaşar et al. / Discrete Applied Mathematics 157 (2009) 1913–1923

To show the result above it is a simple exercise to construct weighted search strategies with the corresponding weighted
search numbers for the complete weighted graphs and to show that n searchers will not suffice for the first case by a
contradictory example.
It is known that if H is a minor of G, then

s(H) ≤ s(G).

However, this result does not hold for monotone search [6]. The following theorem implies that weighted edge searching is
also minor closed.

Theorem 4. If H = (V ′, E ′, w′) is a lighter minor of G = (V , E, w), where G and H are weighted reflexive multigraphs, then

ws(H) ≤ ws(G).

Proof. Assume that G is cleaned according to a strategy S. We construct a strategy S ′ for H from S. Let f : V → V ′ be
the function that is associated with the edge contractions and deletions which transform G to H . Assume that S uses m
searchers. We order the vertices that the searchers are placed on G during S as v1, v2, . . . , vm, where vi’s are not necessarily
distinct. In S ′, we place the searchers on vertices f (vi),∀i = 1, . . . ,m, at the same step as they appeared in the strategy S.
If f (vi) = f (vj), for i 6= j, we place both searchers on the same vertex. To clean H , when a searcher moves from u to v, we
will move the searcher on f (u) to f (v). Since we do not necessarily construct S ′ as an internal or a monotone search, these
modifications will give us a search strategy for H . �

Next, we give two bounds comparingws(G) and s(G).

Theorem 5. For a weighted reflexive multigraph G,

ws(G) ≤ s(G)+ 2.

In particular, if w(e) ≤ 2 ∀e ∈ E, then

ws(G) ≤ s(G)+ 1.

Proof. Assume that S is a search strategy that uses s(G) searchers to clean G. Wewill give a search strategy S ′ that cleans the
weighted G using s(G)+ 2 searchers. To construct S ′ we start with S and modify it. Assume that e = uv is cleaned by sliding
a searcher s0 from u to v according to S. When cleaning the weighted graph we place two extra searchers, one on each of
u and v. Holding these searchers on their places we clean e by s0, which slides along e back and forth. Next we remove the
extra searchers from the end points of e and put them on the end points of the next edge to be cleaned according to S. Note
that no extra recontaminationwill occur, since s(G) searchers were assumed to be sufficient to clean G. Since ewas arbitrary
we clean the weighted graph in this way. The second inequality is shown similarly. �

Together with Eq. (1) the theorem above implies that s(G) ≤ ws(G) ≤ s(G) + 2 for any reflexive multigraph G and any
weight distribution associated with its edges. In Examples 1 and 3, we saw that for certain distributions of weights equality
holds in Theorem 5. In fact, these graphs constitute an infinite family of such graphs.
Let us denote the minimum vertex degree of a graph G by δ(G). It has been shown in [6] that s(G) ≥ δ(G) + 1 for a

connected graph Gwhose minimum degree is at least 3. Below is a similar result for weighted search number.

Theorem 6. Let G = (V , E, w) be a weighted graph. Assume that w(e) ≥ 3 ∀e ∈ E and δ(G) ≥ 3, then

ws(G) ≥ δ(G)+ 2.

Proof. We know thatws(G) ≥ s(G) ≥ δ(G)+ 1. Consider a search strategy S on G and let the first vertex cleaned be u. As a
first case assume that u is of minimumdegree.We claim that S uses at least δ(G)+2 searchers. LetN(u) be the set of vertices
adjacent to u. If the graph induced by N(u) forms a clique, then we know from Proposition 3 that we need at least δ(G)+ 2
searchers to clean u, and we are done. Hence assume that the graph induced by N(u) does not form a clique. Let the last
cleaned edge that is incident to u be e = uv. Then u together with all the remaining δ(G)−1 vertices adjacent to umust each
contain a searcher and there must be one more searcher. Hence all δ(G)+ 1 searchers are used. Notice that all vertices have
minimum degree at least 3, hence none of the δ(G) − 1 searchers located on the δ(G) − 1 adjacent vertices can be moved.
This is due to the fact that to be able to remove a searcher from v ∈ N(u), all neighbors of v other than u must be in N(u)
and we need |N(u)| + 2 = δ(G) + 2 searchers, where |N(u)| denotes the cardinality of the set N(u). Hence the validity of
our claim is shown. Since all the edges have weight at least 3, the searcher on u cannot be moved either. Therefore, u cannot
be cleaned, since e = uv cannot be cleaned by a single free searcher and a searcher on u, because all vertices have degree at
least 3.
Otherwise, if u is not of minimum degree, then there are at least δ(G)+ 1 vertices adjacent to u. Since the weights of the

edges are at least 3, when u is cleaned u together with all its neighbors must contain a searcher, and there must be onemore
searcher to clean the edges incident to u. This makes in total at least δ(G)+ 3 searchers. Hence the theorem is proved. �

Author's personal copy

Ö. Yaşar et al. / Discrete Applied Mathematics 157 (2009) 1913–1923 1917

3.1. Weighted edge search number and pathwidth

A path decomposition for a graphG = (V , E) is a sequence X1, X2, . . . , Xr of subsets of V such that the following conditions
hold:

(1)
⋃r
i=1 Xi = V ,

(2) ∀e ∈ E, ∃i such that Xi contains every end point of e,
(3) For all 1 ≤ i ≤ j ≤ k ≤ r, Xi ∩ Xk ⊆ Xj.

The pathwidth of a graphG, denoted by pw(G), is theminimum h ≥ 0 such thatG has a path decomposition X1, X2, . . . , Xr
where |Xi| ≤ h+ 1 for each i = 1, . . . , r .
A vertex separator of G is a set of vertices removal of which makes the graph disconnected. A layout of a graph G = (V , E)

where |V | = n is a one to one mapping L from V to {1, 2, . . . , n}. A partial layout of G is a one to one mapping L′ from a
subset V ′ of V to {1, 2, . . . , n′}where n′ = |V ′|. Given a partial layout L′, we define VL′(i) := {v ∈ V : ∃u ∈ V such that uv ∈
E and L′(v) ≤ i and either L′(u) > i or L′(u) is undefined}. For a given partial layout L′ where |domain(L′)| = n′, the
vertex separation of G with respect to L′ is defined as vsL′(G) := max{|VL′(i)| : 1 ≤ i ≤ n′}. The vertex separation of G
is vs(G) = min{vsL(G) : L is a layout of G}.
Kinnersley has shown that pathwidth and vertex separation have the same value for any graph [9]. For edge searching

it is known that s(G) is bounded below by pw(G) and above by pw(G) + 2 [7]. In Theorem 7 we will prove that the same
bounds also hold for weighted edge searching.
For the algorithm in Theorem 7, given a partial layout L′ where domain(L′) = V ′ and 1 ≤ i ≤ |V ′|, we define the partial

layout Li as the one that assumes the same values for the vertices in {L′
−1
(1), L′−1(2), . . . , L′−1(i)} and undefined elsewhere.

An edge e = uv is dangling in L′ when u ∈ V ′ and v 6∈ V ′. A vertex u is active in a partial layout L′ if u ∈ V ′ and u is incident
to a dangling edge.

Theorem 7. For any weighted reflexive multigraph G,

pw(G) ≤ s(G) ≤ ws(G) ≤ pw(G)+ 2.

Proof. The lower bound is trivial since pw(G) ≤ s(G) and s(G) ≤ ws(G) [7,9].
To show the upper bound, we will give an algorithm that is derived from Lemma 2.2 in [7]. The algorithm will take as

input a weighted graph G, a layout L of G and it will result in all edges of G being simultaneously clean. It will use at most
vsL(G)+ 2 searchers. Since pw(G) = vs(G) the result will follow.

Algorithm weightedsearch(G, L)
for i := 1 to |V |
do

let v := L−1(i);
place a searcher s1 at v;
for u ∈ V such that L(u) < i and e = uv ∈ E
do

place a searcher s2 at u;
clean e by sliding s2 along e back and forth w(e) times;
remove s2;

end
for every loop e = vv ∈ E
do

place a searcher s2 at v;
slide s2 along e back and forth w(e) times;
remove s2;

end
remove searchers from the vertices that are not active in Li;

end

First observe that at the end of ith iteration the set of active vertices has size no more than |vsLi(G)|. Hence the number
of searchers that remains on the graph at the end of every iteration is no more than the search number of the graph.
Notice that before the beginning of the ith iteration of the outer do loop, the subgraph induced by the domain of Li−1 is

cleaned. Furthermore, at each vertex in the domain of Li−1 there is exactly one searcher and there are no other searchers
on G. This is why no recontamination occurs during the second do loop. By induction we see that G is cleaned as a result of
the algorithm. Note also that at each iteration of the algorithm there are at most vsL(G) + 2 searchers on G since at each
iteration the algorithm calls for at most two searchers other than the ones on at most vsL(G) vertices. Hence for an optimal
layout, the algorithm will use at most vs(G)+ 2 searchers. �

Author's personal copy

1918 Ö. Yaşar et al. / Discrete Applied Mathematics 157 (2009) 1913–1923

Fig. 1. Forbidden configurations A, B, C, D, E and F.

4. Restricted weighted edge searching

We now consider graphs that can be cleaned by small numbers of searchers. In the rest of the text we will consider
weighted reflexive multigraphs. First, let us give the conditions for a graph to have weighted edge search number equal to
one.

Theorem 8. For a weighted graph G, ws(G) = 1 if and only if G is either a path with n edges where all edges have weight one,
or G is a single edge of an arbitrary weight.

For the proof note that for ws(G) to be 1, G cannot have a vertex v such that deg(v) > 2, in which case we need at least
two searchers to clean v.

4.1. Two-searchable graphs

Here we are going to characterize graphs for which ws(G) ≤ 2. We will introduce the notion of containment relation
between two graphs for which we will define a set of rules called reduction rules;
(A) Any suspended path with edge weights 1 is reduced to a single edge of weight 1. Hence, in the reduced graph, there

are no degree 2 vertices whose incident edges both have weight 1.
(B) Consecutive internal edges of a suspended path that have weight 2 are reduced to a single edge of weight 2.
We say that G reduces to G′ if G′ is obtained from G by the reduction rules. For instance, a path Pn where all edges have

weight 1, will reduce to a single edge of weight 1. A cycle Cn where all edges have weight 1, will reduce to a loop. If G and H
reduce to the same graph, then we say that G and H have the same reduction.
Any search strategy for a graph G can be transformed into a search strategy that uses the same number of searchers for

the reduced G and vice versa. Hence, we have the following result.

Lemma 9. If G and H have the same reduction, thenws(G) = ws(H).

We say that G contains F if there exists a graph H such that

(1) G and H have the same reduction, and
(2) F is a lighter minor of H .

Theorem 10. For any reduced graph G, the following are equivalent:

(1) ws(G) ≤ 2
(2) G either does not contain any of the configurations A, B, C,D, E, F given in Fig. 1 or the following conditions hold
simultaneously:
(a)G does not contain any edge e that is not a loop or a pendant edge andw(e) > 2,
(b)G does not contain any 2-cycle having an edge of weight greater than 1,
(c) G does not contain the graphs D, E and F where any two pendant edges with a common end are replaced with a loop of
weight 1,

(d)Every vertex of degree two in graphs B, E and F has an edge incident to it with weight 1 and the other edge with weight 2.
(3) G consists of a path with vertex set {v1, v2, . . . , vn} together with the following conditions:

(a) The only edges between vi’s are the ones between each consecutive pair and they can either be a single edge of weight at
most 2 or a pair of edges of weight 1.

(b)There may be pendant edges or loops of arbitrary weight attached to each vi.

Proof. We will prove the equivalence by showing that (1)⇒ (2)⇒ (3)⇒ (1).
(1) ⇒ (2) None of the graphs in (2) have weighted search number less than 3. The result follows since weighted edge

searching is minor closed due to Theorem 4.
(2) ⇒ (3) G does not contain C, hence there are no chords in G. By Theorem 1 edges or cycles are the only possible

biconnected components of G. Because of condition (2b), edges of the cycles can only have weight 1. On the other hand, G
does not contain A, hence at most two vertices of a cycle can have degree at least 3. This implies that the only biconnected

Author's personal copy

Ö. Yaşar et al. / Discrete Applied Mathematics 157 (2009) 1913–1923 1919

components of G are paired edges with weight 1, loops and edges with arbitrary weight. Then by Theorem 2, G must be
a tree together with paired edges of weight 1 and loops of arbitrary weight. Due to condition (2a), the internal edges of
the tree can have weight at most 2. The result follows if we show that when all of the vertices of degree one are removed,
the resulting graph is a path, with possible loops or paired edges that have weights as described in (3). Assume that it is
not true. Then, there must be a vertex of G that has three different neighbors none of which is a leaf. When none of these
neighbors have degree less than three,Gwould containD togetherwith condition (2c). Similarly, when all of these neighbors
have degree two, G would contain B together with condition (2d). When one of these neighbors has degree two, G would
contain E together with condition (2c) or (2d). Finally, when two of these neighbors both have degree two, Gwould contain
F together with condition (2c) or (2d). Since all of these configurations are forbidden, we arrive at a contradiction. Therefore,
G has the form given in (3).
(3) ⇒ (1) The first vertex v1 can be cleaned by putting both searchers on v1, then by keeping one of the searchers on

v1 and cleaning the incident loops or leaves by the other searcher. Then both searchers can either move along the edge that
connects v1 to v2 or each can move along one of the paired edges of weight 1. The same procedure can be applied to v2 and
in this way one can clean the whole graph. �

5. Monotonicity of weighted edge searching

In this section, we will show that if there exists a weighted search strategy for a weighted graph G using at most k
searchers, then there exists a monotonic weighted search strategy for G using at most k searchers. To prove this, we will
modify and use the so called crusade method, which is a widely used proof method to showmonotonicity in edge searching
or its variants. Here the terminology is similar to that used in [3].
Notice that when sliding a searcher along an edge e = uv from u to v, if no recontamination is possible from u, then

either e becomes clean or the current weight of e decreases from k to k− 1, where k > 1, in which case we say that partial
cleaning is done.
At step i, let the set of cleaned edges correspond to Ai, the set of partially cleaned edges correspond to Pi and let Zi be the

set of vertices where at least one searcher is located. In the edge search there may be more than one searcher located at a
vertex, hence we consider Zi to be a multiset. Set difference, namely, Zi \ {u} corresponds to removing one copy of u from
the multiset Zi.
A weighted search strategy S that uses n steps for a weighted graph G = (V , E, w) can be recorded as a sequence of a

triples of sets

S = (Ai, Pi, Zi)ni=0
such that Ai ⊆ E, Pi ⊆ E \ Ai, Zi ⊆ V for 0 ≤ i ≤ n and A0 = P0 = Pn = ∅, An = E. If v ∈ V is incident with at least one
edge in Ai ∪ Pi and at least one edge in E \ Ai, then v ∈ Zi.
The following are the only possible situations we may encounter during a weighted search:

(1) Putting new searchers: Ai = Ai−1, Zi ⊇ Zi−1, Pi = Pi−1.
(2) Recontamination:
• by removing searchers: Ai ⊆ Ai−1, Zi ⊆ Zi−1, Pi ⊆ Pi−1, or,
• by sliding a searcher along an edge: Ai ⊆ Ai−1, Zi = (Zi−1 \ {u}) ∪ {v}, Pi ⊆ Pi−1

(3) Partial Cleaning: For uv = e ∈ E such thatw(e) ≥ 2, Ai = Ai−1,

Zi = (Zi−1 \ {u}) ∪ {v} and Pi =
{
Pi−1, 2 ≤ wi−1(e) < w(e) or;
Pi−1 ∪ {e}, wi−1(e) = w(e).

(4) Cleaning: For uv = e ∈ E, Ai = Ai−1 ∪ {e}, Zi = (Zi−1 \ {u}) ∪ {v} and

Pi =
{
Pi−1 \ {e}, 2 ≤ w(e) or;
Pi−1, w(e) = 1.

We break up the steps of the strategy so that at most one action is done at each move. In this way, in each move we force
that at most one edge gets cleaned, partially cleaned or contaminated.
For a given edge set E and A ⊆ E, P ⊆ E \ A, δ(A, P) denotes the set of vertices that have at least two edges, e1 and e2,

incident to it such that e1 ∈ A ∪ P and e2 ∈ E \ A.
In edge searching, if A is the set of clean edges and P is the set of partially clean edges at some instant, then δ(A, P)would

correspond to the set of exposed vertices. Every exposed vertex must contain a searcher.
In this section we will need the following lemma. For a proof, refer to [18].

Lemma 11 (Submodularity). For given pairs of subsets of E, (A, P), (B, R) where P ⊆ E \ A and R ⊆ E \ B, the following holds:

|δ((A ∩ B), (P ∩ R))| + |δ((A ∪ B), (P ∪ R))| ≤ |δ(A, P)| + |δ(B, R)|. (2)

Author's personal copy

1920 Ö. Yaşar et al. / Discrete Applied Mathematics 157 (2009) 1913–1923

5.1. Pairs of Crusades

Consider a weighted search strategy for a given graph G = (V , E, w). For a sequence of pairs of subsets of the edge set
E, (X0, Y0), (X1, Y1), . . . , (Xn, Yn), where Yi ⊆ E \ Xi, for 0 ≤ i ≤ n and X0 = Y0 = Yn = ∅, Xn = E, consider the sequence
(X0, X1, . . . , Xn), where ∀i = 0, 1, . . . , n and ∀e ∈ Xi, there exists a step j ≤ i such that wj(e) = 0. Then (X0, X1, . . . , Xn) is
called a crusade associated with (X0, Y0), (X1, Y1), . . . , (Xn, Yn) if for all 1 ≤ i ≤ n

|Xi \ Xi−1| + |Yi \ Yi−1| ≤ 1. (3)

We say that a crusade uses at most k searchers if |δ(Xi, Yi)| ≤ k for all 0 ≤ i ≤ n.
A crusade is progressive if Xi’s form a nested sequence, i.e., X0 ⊆ X1 ⊆ · · · ⊆ Xn and for all 1 ≤ i ≤ n,

|Xi \ Xi−1| + |Yi \ Yi−1| = 1. (4)

Proposition 12. If ws(G) ≤ k, then there exists a crusade using at most k searchers.

Proof. Letws(G) ≤ k and let (A0, P0, Z0), (A1, P1, Z1), . . . , (An, Pn, Zn) be a weighted search strategy for G. Then |Zi| ≤ k for
0 ≤ i ≤ n. From the definition of δ(·, ·), we know that if v ∈ δ(Ai, Pi) then v is an exposed vertex. Since on every exposed
vertex there must be a searcher, δ(Ai, Pi) ⊆ Zi and hence |δ(Ai, Pi)| ≤ |Zi| ≤ k. Each Ai corresponds to a set of clean edges
at step i, hence ∀e ∈ Ai, ∃j ≤ i such that wj(e) = 0. Eq. (3) holds because of the definition of a weighted search since each
step corresponds to only one action. Therefore associated with (A0, P0), (A1, P1), . . . , (An, Pn), the sequence A0, A1, . . . , An
is a crusade that uses at most k searchers. �

Proposition 13. If there exists a crusade using at most k searchers, then there exists a progressive crusade using at most k
searchers.

Proof. To each sequence of pairs (X0, Y0), (X1, Y1), . . . , (XN , YN) one can associate two numbers a(N) =
∑N
i=0(|δ(Xi, Yi)| +

1) and b(N) =
∑N
i=0 |Xi|. Among all crusades (X0, X1, . . . , XN) using at most k searchers and associated with

(X0, Y0), (X1, Y1), . . . , (XN , YN)we will pick the one for which

(1) a(N) is minimum and
(2) b(N) is minimum subject to condition (1).

We denote such a crusade by C = (X0, X1, . . . , Xn).
If |Yi \ Yi−1| = 1, then |Xi \ Xi−1| = 0 due to Eq. (3). Instead, assume that |Yi \ Yi−1| = 0 and |Xi \ Xi−1| = 0.

Then |Yi+1 \ Yi−1| ≤ 1 and |Xi+1 \ Xi−1| ≤ 1. Therefore (X0, X1, . . . , Xi−1, Xi+1, . . . , Xn) is a crusade with respect to
(X0, Y0), (X1, Y1), . . . , (Xi−1, Yi−1), (Xi+1, Yi+1), . . . , (Xn, Yn). For this sequence a(N) takes a smaller value than for C , which
contradicts our assumption. Therefore |Xi \ Xi−1| = 1.
We only need to show that Xi’s form a nested sequence. Observe that if

|δ(Xi−1 ∪ Xi, Yi−1 ∪ Yi)| < |δ(Xi, Yi)|,

then (X0, X1, . . . , Xi−1, Xi−1 ∪ Xi, Xi+1, . . . , Xn) is a crusade with respect to (X0, Y0), (X1, Y1), . . . , (Xi−1, Yi−1), (Xi−1 ∪
Xi, Yi−1 ∪ Yi), . . . , (Xn, Yn). For this sequence a(N) takes a smaller value than for C , hence

|δ(Xi−1 ∪ Xi, Yi−1 ∪ Yi)| ≥ |δ(Xi, Yi)|. (5)

Combining Eqs. (2) and (5), we have

|δ(Xi−1 ∩ Xi, Yi−1 ∩ Yi)| ≤ |δ(Xi−1, Yi−1)|.

From the result above we observe that (X0, X1, . . . , Xi−2, Xi−1 ∩ Xi, Xi, . . . , Xn) is a crusade with respect to
(X0, Y0), (X1, Y1), . . . , (Xi−2, Yi−2), (Xi−1 ∩ Xi, Yi−1 ∩ Yi), (Xi, Yi), . . . , (Xn, Yn). From the minimality of b(N) for C we must
have

|Xi−1 ∩ Xi| ≥ |Xi−1|.

Hence Xi−1 ⊆ Xi. �

Proposition 14. If there exists a weighted search strategy S = (Ai, Pi, Zi)ni=0 for a weighted graph G = (V , E, w) that uses k
searchers, then there exists a weighted search strategy S ′ = (A′j, P

′

j , Z
′

j)
m
j=0 for G such that |P

′

j | ≤ 1 ∀j = 0, 1, . . . ,m and S
′ uses

k searchers as well. Furthermore, for S ′ the following hold:

(1) If e ∈ P ′j andwj(e) = 1, thenwj+1(e) = 0, P
′

j+1 = ∅ and A
′

j+1 = A
′

j ∪ {e}.
(2) If P ′j = P

′

j−1 = {e}, then A
′

j = A
′

j−1.

Author's personal copy

Ö. Yaşar et al. / Discrete Applied Mathematics 157 (2009) 1913–1923 1921

Proof. From S, we construct the required strategy S ′ that uses the same number of searchers to clean G. First, if an edge
e = uv,w(e) ≥ 2 is partially cleaned at step i in S by sliding a searcher s1 from u to v, in S ′ we remove s1 from u and place
it on v. We modify S ′ step by step so that according to its final version G will be cleaned. While modifying S ′ we only need
to consider edges that have capacity at least two, since edges of unit capacity are never in any P ′j .
In S during the steps that reduce the weight of an edge e = uv, there is a step that results in enough searchers on the

ends of e to clean e. If this happens at the kth step in S, then during S ′ the cleaning can be done successively instead of the
kth step. So in S ′ we will have w(ek1) = w(e)− 1, w(ek2) = w(e)− 2, . . . , w(ekw(e)−1) = 1, and w(ekw(e)) = 0. We have to
show that we can clean every edge in this way.
If a searcher s1 ends up on u in S after the kth step but s1 ends up on v 6= u in S ′ after the kw(e)th step, then we remove s1

from v and place it on u at steps kw(e)+1 and kw(e)+2.
Let e0 be the first edge with weight at least 2 that gets cleaned in S. If e0 = uv is a pendant edge, where deg(v) = 1, then

we need at least two searchers to clean it, since w(e0) ≥ 2. If these two searchers are put on one or both ends of e0 for the
first time at step k in strategy S, in S ′ we clean e0 in steps k1, k2, . . . , kw(e0) by letting one of them guard u and the other slide
on e until it becomes clean.
If e0 is not a pendant edge, then we need at least 3 searchers, two to guard the ends of e0 and one to slide along e0, when

w(e0) ≥ 2. If these three searchers are put on ends of e0 for the first time at step k in strategy S, in S ′ we clean e0 in steps
k1, k2, . . . , kw(e0).
Assume that we continue cleaning edges according to S and construct S ′ in this way. Let e = uv be the next edge that is

cleaned according to S at step i.
Note that emight have been cleaned and contaminated during S before step i. But we know that there exists a step j < i

in S such that wj−1(e) = w(e), wj(e) = w(e) − 1, wi−1(e) = 1, wi(e) = 0 and there exists no k such that j < k < i and
wk(e) = w(e). In other words, e does not become recontaminated between step j and step i.
If e is not a pendant edge, then just before the ith step, there must be at least one searcher located on each of u and v.

Case 1: e is not a pendant edge andw(e) = 2
At some step, say j in S,wj−1(e) = 2 andwj(e) = 1. Here j is a step between the last time ewas cleaned and the ith step.
(1) If at the jth step two searchers were located on u and v, one on each vertex, and a third searcher was sliding along e,

either from u to v or from v to u, in S ′ we can clean e in two steps, j1 and j2, using the same three searchers.
(2) If at the (j− 1)th step two searchers, s1 and s2, were located on u and at the jth step one searcher, s2, slid along e from

u to v, there are two possibilities to reduce the weight from 1 to 0. If a third searcher slides along e at step k, then we clean e
in S ′ in two steps, k1 and k2, with these 3 searchers. Otherwise s2may slide along e from v to u at step k (or s1may slide along
e from u to v at step k, which can be transferred to S ′ similarly). Notice that all of the edges incident to v are contaminated
at step j (since they are on an unguarded path to a contaminated edge e). Furthermore at step k− 1 all edges incident to v,
except for e, must be clean. Since otherwise when s2 slides along e from v to u, it would not be partially cleaning e. Hence,
all edges incident to v, except for e, must be cleaned between the jth step and the kth step and they all have weight 1. At
some step l, such that j < l < k, one of those edges, say e1, gets clean by a searcher s3 sliding along e1 either starting from v
or ending at v. Therefore in S ′, we clean e in steps l1, l2 where s3 slides two times along e.
Case 2: e is not a pendant edge andw(e) ≥ 3
Since the number of searchers needed for reducing the weight from 3 to 2 and 2 to 1 is the same as reducing the weight

from n to n− 1 and from n− 1 to n− 2 for n ≥ 3, it is enough to consider the casew(e) = 3.
At some point, say j during S,wj−1(e) = 3 andwj(e) = 2. If this is done by using three searchers, then e can be cleaned in

S ′ in three steps j1, j2, j3 which would replace the jth step of S. If in the jth step two searchers, s1 and s2, are used by placing
both of them on u and sliding one of them to v, after this step, u or v cannot be left unguarded. Hence, to reduce the weight
from 2 to 1 we need one more searcher, say s3, which is going to slide along e at step k in S. Accordingly, in S ′, we replace
step kwith steps k1, k2, k3 where s3 slides back and forth along e.
If e = uv is a pendant edge where deg(v) = 1, we consider two cases.

Case 3: e = uv is a pendant edge andw(e) = 2
The weight of e should go from 2 to 1 in S at some step, say at k. If this is done by a searcher s1 sliding from u to v, then

there must be another searcher on u. In S ′, we replace the kth step with steps k1, k2 in which s1 slides back and forth along
e twice.
If the weight of e is reduced from 2 to 1 by a searcher s1 sliding from v to u, then after this step umust always be guarded

by a searcher. There are two ways to reduce the weight from 1 to 0.
Another searcher, say s2, may slide along e at the kth step of S. In S ′ we replace the kth step with steps k1, k2 in which s2

slides back and forth along e twice.
In S, all the edges incident to umay get clean and s1 may slide back from u to v. Then during cleaning of an edge e1 6= e

incident to u, there must be a searcher s2 either sliding from u or ending at u, say at the lth step. Accordingly, in S ′, just after
the lth step, we insert steps l1 and l2 in which s2 guards u and s1 slides twice back and forth along e.
Case 4: e = uv is a pendant edge andw(e) ≥ 3
Again, we only need to consider the case w(e) = 3. At some step the weight of e should go from 3 to 2 during S, say at

step j.

Author's personal copy

1922 Ö. Yaşar et al. / Discrete Applied Mathematics 157 (2009) 1913–1923

If this is done by a searcher s1 sliding from u to v, then there must be another searcher on u. In S ′, we replace the jth step
with steps j1, j2, j3 in which s1 slides back and forth along e three times.
If a searcher s1 slid from v to u to reduce the weight of e from 3 to 2, then, after this step u cannot be left unguarded,

otherwise the edge would be recontaminated. Now, to reduce the weight from 2 to 1, another searcher, say s2, has to slide
along e. If this happens at the kth step of S, in S ′ we replace the kth step with steps k1, k2, k3 in which s2 slides back and forth
along e. �

Proposition 15. Assume that S is a weighted search strategy for G = (E, V , w) that uses k searchers. Then there exists a
progressive crusade (X0, X1, . . . , Xn) associated with (X0, Y0), (X1, Y1), . . . , (Xn, Yn), where Yi ⊆ E \Xi, for 0 ≤ i ≤ n, that uses
at most k searchers such that both the following conditions hold:

(1) If |Yi \ Yi−1| = 0, then either
(a) Yi = ∅, Yi−1 = ∅, Xi \ Xi−1 = {e}, andw(e) = 1, or;
(b)Yi = ∅, Yi−1 = {e}, Xi \ Xi−1 = {e}, andw(e) ≥ 2.

(2) If |Yi \ Yi−1| = 1, then Yi−1 = ∅, Yi = {e}, Xi \ Xi−1 = ∅, Xi+1 \ Xi = {e}, andw(e) ≥ 2.

Proof. Using the procedure given in the proof of Proposition 14, we construct a weighted search (A′i, P
′

i , Z
′

i) such that
|P ′i | ≤ 1,∀i. Next we delete the (A

′

i, P
′

i , Z
′

i)’s for which |P
′

i | = 1 and ∃j 6= i such that (A′j, P
′

j) = (A′i, P
′

i) except for
the (A′i, P

′

i , Z
′

i)’s such that wi(e) = 1 where {e} = P
′

i . We apply Propositions 12 and 13 to this reduced sequence and
obtain a progressive crusade. The two conditions of the theorem follow from the construction of S ′ and the implications of
Proposition 14 if we let Xi = Ai and Yi = Pi. If two consecutive partially cleaned sets are empty, then S ′ is cleaning an edge
of weight 1, which corresponds to part 1(a). Part 1(b) is the same as part (1) of Proposition 14. In both of them an edge e
which is partially clean at step i− 1 becomes clean at step i. Finally, during the consecutive steps where an edge is partially
cleaned no other edge is cleaned. This is part (2). �

In the proof of Theorem 16 we will consider the indices of the sets Xi and Yi as levels. Hence the levels consists of steps.
The ith level may not correspond to the ith step in the strategy due to the construction of the progressive crusade in the
proof of Proposition 15.

Theorem 16. If there exists a weighted search S using at most k searchers for a weighted graph G, then there exists a monotone
edge search S ′ using at most k searchers for G.

Proof. Proposition 14 implies that from S we can construct a weighted search S ′ that uses at most k searchers and
|P ′i | ≤ 1 for all i. Proposition 15 ensures that there exists a progressive crusade X0, X1, . . . , Xn associated with
(X0, Y0), (X1, Y1), . . . , (Xn, Yn) which can be obtained from S ′ and it uses at most k searchers. We construct a monotone
weighted search strategy inductively that cleans the edges in the order e1, e2, . . . , em, where for each ej there exists i such
that Xi \ Xi−1 = {ej}. Assume that we cleaned the edges e1, e2, . . . el−1 in this order and no edge other than these is cleaned.
Assume that we finished cleaning el−1 at the end of (i− 1)th level. We show that in the next steps we will clean el. We will
use the implications of Proposition 15. We consider three cases.
Case 1. |Yi \ Yi−1| = 0, Yi = ∅, and Yi−1 = ∅. Here Xi \ Xi−1 = {el}, andw(el) = 1,. By using the argument in [3], we see that
el can be cleaned with at most k searchers. Refer to [18] for details.
Case 2. Yi = ∅, Yi−1 = {el}. We havew(el) ≥ 2. We consider the cases whether el is a pendant edge or not.
(1) If el is not a pendant edge, then at (i − 1)th level, there should be at least one searcher on each end of el, say s1 on u

and s2 on v. If |δ(Xi−1, Yi−1)| + 1 ≤ k, then we can finish the cleaning of el by the searcher that is free, i.e., the one that is not
on any exposed vertex. Otherwise |δ(Xi−1, Yi−1)| + 1 > k and since |δ(Xi−1, Yi−1)| ≤ k, we must have |δ(Xi−1, Yi−1)| = k.
There are four subcases to consider when el is not a pendant edge.
In the first subcase let each of u and v have at least one edge incident to them other than el that is already clean, hence

in Xi−1. Then before (i− 1)th level there must be two searchers located on each of u and v. In this case, the only way that el
became partially clean for the first time is that a third searcher, other than the ones on u and v, slid along el. Hence, el can
be cleaned by this third searcher in the next steps.
Consider together the subcase where there are no clean edges incident to u or v and the subcase where only one of the

end points of el, say u, has an edge incident to it that is clean and an edge that is contaminated. In both of these cases the
exposed vertices in level (i − 1) are the same as in level i, hence δ(Xi−1, Yi−1) = δ(Xi, Yi). Hence none of the searchers can
move from their places during the steps between these levels. On the other hand, we know that |Xi \ Xi−1| = {el}. But there
is no possible way to clean el when none of the searchers is moving. Hence we arrive at a contradiction.
The last subcase iswhere all edges other than el incident to one of the end points of el, say u, are already clean and all edges

incident to v are contaminated. We know that u ∈ δ(Xi−1, Yi−1) and u 6∈ δ(Xi, Yi) since at level i all edges incident to u are in
Xi (since Xi’s are nested). The only way this can happen is that either wi−1(el) = 1, and we are done, or wi−1(el) > 1 and a
third searcher slides along el to clean it totally during the steps between these levels, which is impossible if δ(Xi−1, Yi−1) = k
since none of the searchers can move.
(2) If el is a pendant edge, let deg(v) = 1 and deg(u) > 1. We only need to consider two subcases. When there is at least

one edge incident to u that is clean and hence in Xi−1, then before the (i − 1)th level there must have been a searcher, say

Author's personal copy

Ö. Yaşar et al. / Discrete Applied Mathematics 157 (2009) 1913–1923 1923

s1, located on u. As in the previous subcase, the only way for el to become partially clean is that a searcher other than s1, say
s2, slides along el at the step that corresponds to level i− 1. Hence, el can be cleaned with s2 together with s1 which will be
kept on u as a guard.
Finally, if all edges incident to u other el are contaminated, observe that u ∈ δ(Xi−1, Yi−1) = δ(Xi, Yi). This implies that

none of the searchers could move during the steps between the levels i− 1 and i, which contradicts |Xi \ Xi−1| = {el}.
Case 3. |Yi \ Yi−1| = 1. We have Yi−1 = ∅, Yi = {el}. We know that Xi \ Xi−1 = ∅, Xi+1 \ Xi = {el}, and w(e) ≥ 2. This case
reduces to the previous case by shifting all the observations to the levels i and i+ 1. Applying the same procedures we can
finish the cleaning of el at the successive steps after level i. �

Theorem 16 implies thatws(G) = mws(G). From this we deduce that theWEIGHTED EDGE SEARCHING problem belongs
to NP, since we only need to guess in which order the edges are cleaned and then to check whether the edges can be cleaned
according to this sequence using at most k searchers. In Section 1 we noted that the problem is NP-hard. It follows from
these two observations that the problem is NP-complete. Hence we have the following.

Corollary 17. WEIGHTED EDGE SEARCHING is NP-complete.

6. Conclusion

In this paper, we introduced a new weighted version of the edge searching problem. Our motivation was that there may
be networks where links have different capacities or importance factors. In this setting decontamination is not the same for
all edges.
For any graph G, Theorem 8 implies that the pathwidth and the weighted edge search number may differ by at most 2.

Furthermore, since pw(G) ≤ s(G) ≤ ws(G) ≤ pw(G) + 2, if s(G) = pw(G) + 2, we have s(G) = ws(G). From this result
a characterization of graphs for which any weight distribution would give the same search number and weighted search
number can be obtained.
In Section 4 we identified the forbidden graphs containment of which prevents the weighted search number to be at

most 2. The characterization of graphs G for which the search number is at most 3 is done in [13] and it is more complicated
than the characterization of graphs such that s(G) ≤ 2. The characterization for s(G) ≤ 4 is not known. For fixed k the set of
forbidden graphs is called the obstruction set. The theory on graph minors built by Robertson and Seymour [15] implies that
since weighted edge searching is minor closed, due to Theorem 4, the obstruction set is finite. However, a construction of
the obstruction set is not known for any fixed k ≥ 4.
Themain result of the paper is Theorem16, namely, for anyweighted graphG, we havews(G) = mws(G). One implication

of this important result is the NP-completeness of the weighted edge searching problem. Secondly, monotonicity implies
that one can always use a monotonic strategy without any increase on the number of searchers. This is important since
when considering edge searching problems most of the time it is simpler to work with a monotonic strategy. Monotonicity
is also advantageous when there are costs related to moving along an edge and number of moves. If sliding along an edge is
very costly, a monotonic strategy would be desired.

Acknowledgments

We are grateful to Dr. D. Morgan and Mr. N. McKay for fruitful discussions. We would like to thank the referees for
comments and criticism. The authors were supported in part by NSERC.

References

[1] L. Barrière, P. Flocchini, P. Fraigniaud, N. Santoro, Capture of an intruder bymobile agents, in: 14thACMSymp. on Parallel Algorithms andArchitectures,
SPAA’02, Winnipeg, August 10–13, 2002, pp. 200–209.

[2] L. Barrière, P. Fraigniaud, N. Santoro, D. Thilikos, Searching is not jumping, in: Proc. 29thWorkshop on Graph Theoretic Concepts in Computer Science,
WG 2003, in: Lecture notes in Computer Science, vol. 2880, 2003, pp. 34–45.

[3] D. Bienstock, P. Seymour, Monotonicity in graph searching, Journal of Algorithms 12 (1991) 239–245.
[4] R.L. Breisch, An intuitive approach to speleotopology, Southwestern Cavers 6 (1967) 72–78.
[5] F. Chung, On the cutwidth and the topological bandwidth of a tree, SIAM Journal of Algebraic Discrete Methods 6 (2) (1985) 268–277.
[6] D. Dyer, Sweeping graphs and digraphs, Ph.D. Thesis, Simon Fraser University, Canada, 2004.
[7] J.A. Ellis, I.H. Sudborough, J.S. Turner, The vertex separation and search number of a graph, Information and Computation 113 (1994) 50–79.
[8] F.V. Fomin, P. Heggernes, J.A. Telle, Graph searching, elimination trees, and a generalization of bandwidth, Algorithmica 41 (2) (2004) 73–87.
[9] N.G. Kinnersley, The Vertex Separation Number of a graph equals its path-width, Information Processing Letters 42 (1992) 345–350.
[10] L.M. Kirousis, C.H. Papadimitriou, Searching and pebbling, Theoretical Computer Science 47 (2) (1986) 205–218.
[11] A.S. LaPaugh, Recontamination does not help to search a graph, Journal of ACM 40 (1993) 224–245.
[12] F.S. Makedon, C.H. Papadimitriou, I.H. Sudborough, Topological bandwidth, SIAM Journal Algebraic Discrete Methods 6 (1985) 418–444.
[13] N. Megiddo, S.L. Hakimi, M.R. Garey, D.S. Johnson, C.H. Papadimitriou, The complexity of searching a graph, ACM 35 (1) (1988) 18–44.
[14] T. Parsons, Pursuit-evasion in a graph, in: Theory and Applications of Graphs, in: Lecture Notes in Mathematics, Springer-Verlag, 1976, pp. 426–441.
[15] N. Robertson, P.D. Seymour, Graph minors—a survey, in: I. Anderson (Ed.), Surveys in Combinatorics, Cambridge University Press, Cambridge, 1985,

pp. 153–171.
[16] D.B. West, Introduction to Graph Theory, Prentice Hall, 1996.
[17] H. Whitney, Congruent graphs and the connectivity of graphs, American Journal of Mathematics 54 (1932) 150–168.
[18] Ö. Yaşar, Algorithmic complexity and extremality characterizations for edge searching and its variations, Ph.D. Thesis, Memorial University of

Newfoundland, Canada, 2008.

