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COGNITIVE DEVELOPMENT OF PROOF 
David Tall, Oleksiy Yevdokimov, Boris Koichu, Walter Whiteley, 

Margo Kondratieva, Ying-Hao Cheng 
1. Introduction 
In this chapter our aim is to seek how the growing individuals develop ideas of 
proof appropriate for their level of maturity at the time, and to see how these 
ideas develop over the long term, from the young child to the adult user of 
mathematics and on to the research mathematician. We will focus on the ways in 
which developing individuals build from real world perceptions and actions to a 
mental world of sophisticated mathematical knowledge. 
This chapter is consonant with the four plenaries presented to the ICMI 
conference on proof. Longo sees the formalism of modern mathematics growing 
out of the actions and perceptions of the biological human brain. Grabiner 
reports significant examples of development in history as mathematical experts 
build on their experience to develop new mathematical constructs. Borwein 
observes the changing nature of mathematical thought now that we have 
computer technology to perform highly complex computations almost 
immediately and to represent information in dynamic visual ways. Quinn 
underlines the mathematical concern that proof at the highest level needs to be 
fundamentally based on the precision of the axiomatic method. 
Mathematical proof develops in many different forms both in historical time and 
in the development of any individual. Various degrees of proof are suggested in 
school mathematics by terms such as ‘show’, ‘justify’, ‘explain’, ‘prove from 
first principles’. Rather than begin by debating the difference between them, we 
will use the word ‘proof’ in its widest sense and analyse the changes in its 
meaning as the individual matures. 
The outline of the chapter is as follows. In Section 2 we consider how the nature 
of proof is envisioned by professional mathematicians and by novices in 
mathematics. This is followed, in Section 3, by introducing a three-facet 
conceptual framework based on perceptions, operations and formal structures 
that enables us to adequately consider the cognitive journey from the child to the 
adult, and from the novice to professional mathematician. Section 4 deals with 
the development of proof from human experience. Section 5 considers the 
development of proof in the context of Euclidean and non-Euclidean geometry. 
Section 6 details the increasing sophistication of proofs in arithmetic and algebra 
from proof using specific calculations, generic arguments, algebraic 
manipulation and on to algebraic proof based on the rules of arithmetic. Section 
7 addresses the development of proof in undergraduates and on to research 
mathematics, followed by a summary of the whole development. 
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2. PERCEPTIONS OF PROOF 
2.1 What is proof for mathematicians? 
Mathematics is a diverse and complex activity, spanning a range of contexts 
from everyday practical activities, through more sophisticated applications and 
on to the frontiers of mathematical research. At the highest level of 
mathematical research, discovery and proof of new theorems may be considered 
to be the summit of mathematical practice. In the words of three 
mathematicians: 

Proofs are to mathematics what spelling (or even calligraphy) is to poetry. Mathematical 
works do consist of proofs, just as poems do consist of characters (Arnold, 2000, p. 403). 

‘Ordinary mathematical proofs’—to be distinguished from formal derivations—are the 
locus of mathematical knowledge. Their epistemic content goes way beyond what is 
summarised in the form of theorems (Rav, 1999, p. 5). 
The truth of a mathematical claim rests on the existence of a proof. Stated this way, such 
a criterion is absolute, abstract, and independent of human awareness. This criterion is 
conceptually important, but practically useless (Bass, 2009). 

We chose these quotations because they suggest not only the importance of 
proofs in mathematics, but also reveal the debate on the role and nature of 
proofs within the mathematical community. We learn from the first quotation 
that proofs are fundamental to the structure of mathematics. The second tells us 
that the usual (‘ordinary’) proofs produced by mathematicians have subtleties of 
meaning that go beyond the application of logic. The third implies that 
mathematical proof as an absolute argument is conceptually important but may 
not be what occurs, or even what is achievable, in practice. 
A formal proof, in the sense of Hilbert (1928/1967), is a sequence of assertions, 
the last of which is the theorem that is proved and each of which is either an 
axiom or the result of applying a rule of inference to previous formulas in the 
sequence; the rules of inference are so evident that the verification of the proof 
can be done by means of a mechanical procedure. Such a formal proof can be 
expressed in first-order set-theoretical language (Rav, 1999). Dawson (2006, 
p.271) observed that ‘formal proofs appear almost exclusively in works on 
computer science or mathematical logic, primarily as objects to study to which 
other, informal, arguments are applied.’ 
An ordinary mathematical proof consists of an argument to convince an 
audience of peer experts that a certain mathematical claim is true and, ideally, to 
explain why it is true (cf. Dawson, 2006). Such ordinary proofs can be found in 
mathematics research journals as well as in school and university-level 
textbooks. They utilize second or higher-order logic (Shapiro, 1991), but often 
contain conceptual bridges between parts of the argument rather than explicit 
logical justification (Rav, 1999).  Sometimes a convincing argument for peer 
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experts does not constitute a formal proof, only a justification that a proof can be 
constructed, given sufficient time, incentive, and resources (Bass, 2009). 
From the epistemic point of view, a proof for mathematicians involves thinking 
about new situations, focusing on significant aspects, using previous knowledge 
to put new ideas together in new ways, consider relationships, make conjectures, 
formulate definitions as necessary and to build a valid argument. 
In summary, contemporary mathematicians’ perspectives on proof are 
sophisticated yet build on the broad development to ‘convince yourself, 
convince a friend, convince an enemy,’ in mathematical thinking at all levels 
(Mason, Burton & Stacey, 1982). To this should be added Mason’s further 
insight that mathematicians are able to develop an ‘internal enemy’– a 
personally constructed view of mathematics that not only sets out to convince 
doubters, but shifts to a higher level attempting to make sense of the 
mathematics itself. 
2.2 What is proof for growing individuals? 
Children or novices do not initially think deductively. The young child begins 
by interacting with real-world situations, perceiving with the senses including 
vision, hearing, touch, acting on objects in the world, pointing at them, picking 
them up, exploring their properties, developing language to describe them. 
In parallel with the exploration of objects, the child explores various operations 
on those objects: sorting, counting, sharing, combining, ordering, adding, 
subtracting, multiplying, dividing, developing the operations of arithmetic and 
on to the generalized arithmetic of algebra. This involves observing regularities 
of the operations, such as addition being independent of order and various other 
properties that are collected together and named ‘the rules of arithmetic’. 
Properties that were seen as natural occurrences during physical operations with 
objects are subtly reworded to become rules that must be obeyed. Children may 
even establish their own rules which are not necessarily correct yet, 
nevertheless, help them to make initial steps towards deductive thinking. For 
instance, a four-year old child attempting to persuade her parents that, ‘I am 
older (than another child) because I am taller.’ (Yevdokimov, 2010.) 
Over the longer term, the convincing power of the emerging rules for the child is 
often rooted not only in the observation that the rules ‘work’ in all available 
situations, but in the external role of authorities such as a parent, a teacher or a 
textbook (Harel & Sowder, 1998). 
It is only much later—usually at college level—that axiomatic formal proof 
arises in terms of formal definitions and deductions. Unlike earlier forms of 
proof, the axioms formulated express only the properties required to make the 
necessary deduction, and are no longer restricted to a particular context, but to 
any situation where the only requirement is that the axioms are satisfied. 
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This yields a broad categorization of three distinct forms of proof: using figures, 
diagrams, transformations and deduction in geometry, using established rules of 
arithmetic in algebra initially encountered in school, and in axiomatically 
defined structures met only by mathematics majors in university. Our task is to 
fit the development of proof in general and these three forms of proof in 
particular into a framework of cognitive growth. 

3. THEORETICAL FRAMEWORK 
We begin by considering a brief overview of theories of cognitive growth 
relevant to the development of proof. Then we focus on a single idea that acts as 
a template for the cognitive development of proof in a range of contexts: the 
notion of a crystalline concept. This will then be used as a foundation for the 
development of mathematical thinking over time, in which the cognitive 
development of proof plays a central role. 
3.1 Theories of cognitive growth 
There are many theories of cognitive growth offering different aspects of 
development over the longer term. Piaget, the father of cognitive approaches to 
development, sees the child passing through various stages, from the sensori-
motor, through concrete operations, then on to formal operations. 
Lakoff (1987) and his co-workers (Lakoff & Johnson, 1999; Lakoff & Núñez, 
2000) claim that all human thought is embodied through the sensori-motor 
functions of the human individual and builds linguistically through metaphors 
based on human perception and action. 
Harel and Sowder (1998, 2005) describe cognitive growth of proof in terms of 
the learner’s development of proof schemes – relatively stable 
cognitive/affective configurations responsible for what constitutes ascertaining 
and persuading an individual of the truth of a statement at a particular stage of 
mathematical maturation. A broadly-based empirical study found a whole range 
of different proof schemes, some categorized as ‘external conviction’, some 
‘empirical’ and some ‘analytical’. 
Van Hiele (1986) focuses specifically on the development of Euclidean 
geometry, proposing a sequence of stages from the recognition of figures, 
through their description and categorization, the more precise use of definition 
and construction using ruler and compass and on to the development of a 
coherent framework of Euclidean deductive proof. 
There are also theories of development of symbolism through the encapsulation 
of processes (such as counting) into concepts (such as number) that reveal a 
different kind of development in arithmetic and the generalized arithmetic of 
algebra (Dubinsky & McDonald, 2001; Gray & Tall, 1994; Sfard, 1991). 
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Many theoretical frameworks speak of multiple representations (or registers) 
that operate in different ways (e.g., Goldin, 1998; Duval, 1986). The two distinct 
forms of development through the global visual-spatial modes of operation on 
the one hand and the sequential symbolic modes of operation on the other can 
operate in tandem with each supporting the other (Paivio, 1991). Bruner’s three 
modes of communication—enactive, iconic, symbolic—also presume different 
ways of operating: the sensori-motor basis of enactive and iconic linking to the 
visual and spatial, and the symbolic forms including not only language but the 
sub-categories of number and logic (Bruner, 1966). 
The hypothesis about distinct cognitive structures for language/symbolism and 
for visualisation has received empirical support by means of neuroscience. 
For instance, figure 1 shows the areas of the brain stimulated when responding 
to the problem ‘5×7’, which coordinates an overall control in the right 
hemisphere and the language area in the left recalling a verbal number fact, and 
the response to the problem ‘Is 5×7>25?’, which uses the visual areas at the 
back to compare relative sizes (Dehaene, 1997). This reveals human thinking as 
a blend of global perceptual processes that enable us to ‘see’ concepts as a 
gestalt (Hoffmann, 1998), and sequential operations that we can learn to perform 
as mathematical procedures. 
The brain operates by the passage of information between neurons where 
connections are excited to a higher level when they are active. Repeated use 
strengthens the links chemically so that they are more likely to react in future 
and build up sophisticated knowledge structures. Metzoff, Kuhl, Movellan and 
Sejnowski (2009) formulate the child’s learning in terms of the brain’s implicit 
recognition of statistical patterns: 

Recent findings show that infants and young children possess powerful computational 
skills that allow them automatically to infer structured models of their environment from 

 
Figure 1: Areas of the brain recalling a fact and performing a comparison 

 



 

 
 

6 

the statistical patterns they experience. Infants use statistical patterns gleaned from 
experience to learn about both language and causation. Before they are three, children 
use frequency distributions to learn which phonetic units distinguish words in their 
native language, use the transitional probabilities between syllables to segment words, 
and use covariation to infer cause-effect relationships in the physical world (p. 284). 

The facility for building sophisticated knowledge structure is based on a 
phenomenal array of neuronal facilities for perception and action that are present 
in the new-born child and develop rapidly through experience in the early years. 
Tall (2008) refers to these abilities as ‘set-befores’ (because they are set before 
birth as part of our genetic inheritance and develop through usage) as opposed to 
‘met-befores’ that arise as a result of previous experience and may be supportive 
or problematic when that experience is used in new contexts. He hypothesizes 
that three major set-befores give rise to three distinct developments of 
mathematical thinking and proof through: 

(a) recognition of similarities, differences and patterns through perception, 
(b) repetition: the ability to learn complex sequences of operation through action, and 
(c) the development of language to enable perception and action to be expressed and 
conceived in increasingly subtle ways. 

In the development of mathematical thinking, these three set-befores combine to 
give the three different ways of constructing mathematical concepts. Language 
enables the verbal categorization of the perception of figures in geometry and 
other aspects of mathematics. It enables the encapsulation of processes as 
concepts to compress processes that occur in time into manipulable mental 
objects in arithmetic and algebra. And it enables definition of concepts, both in 
terms of observed properties of perception and action in school mathematics and 
also of the proposed set-theoretic properties of axiomatic systems. 
As the authors of this chapter reflected together on the total development of 
mathematical proof and the many cognitive theories available with various links 
and differences, we came to the view that there is a single broad developmental 
template that underlies them all, from early perceptions and actions, to the 
various forms of Euclidean, algebraic and axiomatic proof. 
3.2 Crystalline concepts 
The foundational idea that underpins our framework can be introduced using a 
single specific example that starts simply and becomes more general until it 
provides a template for the total development of mathematical proof, from the 
first perceptions and actions of the child to the Platonic concepts of Euclidean 
geometry, algebraic proofs based on the rules of arithmetic, and formal proofs in 
axiomatic mathematics. 
Our example is the notion of an isosceles triangle as seen by a maturing child. 
At first the child perceives it as a single gestalt. It may have a shape that is broad 
at the bottom, narrowing to the top with two equal sides, two equal angles and 
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an axis of symmetry about a line down the middle. If the triangle is cut out of 
paper, it can be folded over this central line to reveal a complete symmetry. The 
child can learn to recognise various isosceles triangles and describe some of 
their properties. However, at this early stage, all these properties occur 
simultaneously, they are not linked together by cause-effect relationship. 
In order to be able to make sense of coherent relationships, the child needs to 
build a growing knowledge structure (or schema) of experiences involving 
perceptions and actions that relate to each other. As the child develops, some of 
the properties described may become privileged and used as a definition of a 
particular concept. For instance, one may describe an isosceles triangle to be ‘a 
triangle with two equal sides.’ Now the child may use this criterion to test 
whether new objects are isosceles triangles. For the child, the ‘proof’ that a 
particular triangle is isosceles is that anyone can see that it has two equal sides. 
Subsequently, the child may be introduced to a more sophisticated knowledge 
structure, such as physically placing one triangle on top of another and 
verbalizing this as the principle of congruence. As the child becomes aware of 
more and more properties of an isosceles triangle and his or her conceptions of 
relationships develop, it may become possible to see relationships between 
properties and to use appropriate principles based on constructions and 
transformations to deduce some properties from the others. The idea emerges 
that it is not necessary to include all known properties in a definition. An 
isosceles triangle defined only in terms of equal sides, with no mention of the 
angles, can now be proved by the principle of congruence to have equal angles. 
Other, more sophisticated, properties may be deduced using similar techniques. 
For instance, for an isosceles triangle, the perpendicular bisector of the base can 
be proved to pass through the vertex, or the bisector of the vertex angle can be 
proved to meet the base in the midpoint at right angles. Further proofs show that 
any of these deduced properties mentioned may be used as alternative 
definitions. At this point there may be several different possible definitions that 
are now seen to be equivalent. It is not that the triangle has a single definition 
with many consequences, but that it has many equivalent definitions any one of 
which can be used as a basis for the theory. One of these properties, usually the 
simplest one to formulate, is then taken as the primary definition and then all 
other properties are deduced from it. 
 Then something highly subtle happens: the notion of isosceles triangle—which 
originally was a single gestalt with many simultaneous properties, and was then 
defined using a single specific definition—now matures into a fully unified 
concept, with many properties linked together by a network of relationships 
based on deductions. 
We introduce the term crystalline concept for such a phenomenon. A crystalline 
concept may be given a working definition as ‘a concept that has an internal 
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structure of constrained relationships that cause it to have necessary properties 
as part of its context.’ A typical crystalline concept is the notion of an idealized 
Platonic figure in Euclidean geometry. However, as we shall see, crystalline 
concepts are also natural products of development in other forms of proof such 
as those using symbol manipulation or axiomatic definition and deduction. 
The long-term formation of crystalline concepts matures through the 
construction of increasingly sophisticated knowledge structures, as follows: 

• perceptual recognition of phenomena where objects have simultaneous properties, 
• verbal description of properties, often related to visual or symbolic representations, 

to begin to think about specific properties and relationships, 
• definition and deduction, to define which concepts satisfy the definition and to develop 

appropriate principles of proof to deduce that one property implies another, 
• realising that some properties are equivalent so that the concept now has a structure of 

equivalent properties that are related by deductive proof, 

and finally that 
• these properties are different ways of expressing an underlying crystalline concept 

whose properties are now connected together by deductive proof. 

Crystalline concepts are not isolated from each other. The deductive network of 
one crystalline concept may intersect with another. For instance, a child may 
begin to perceive an isosceles triangle as a representative of a broader class of 
objects—triangles in general—and compare the definitions and properties 
involved to find new deductive journeys relating concepts that may not always 
be equivalent. This leads to the distinction between direct and converse 
deduction of properties and further developments of deductive relationships 
(Yevdokimov, 2008). 
This development represents a broad trend in which successive stages are seen 
as developing and interrelating one with another, each correlated within the next 
(Figure 2.) This is represented by the deepening shades of gray as increasingly 
sophisticated knowledge structures are connected together as each new stage 
develops and matures. On the right is a single vertical arrow whose shaft 
becomes more firmly defined as it is traced upwards. Such an arrow will be used 
subsequently to denote the long-term development from initial recognition of a 
phenomenon in a given mathematical context through increasing sophistication 
to deductive knowledge structures. The development is a natural human growth 
and should not be seen as a rigid growth of discrete levels, rather as a long-term 
growth in maturity to construct a full range of mathematical thinking from 
perceptual recognition to deductive reasoning. 
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Such a framework is consistent with van Hiele’s theory of the teaching and 
learning of geometry, but it goes further by making explicit the final shift from 
equivalent figures drawn on the page or in sand to conceiving them as instances 
of crystalline concepts in the form of perfect platonic objects. 

The framework is also consistent with the development of other forms of 
geometry that arise in new contexts (projective geometry drawing a 
representation of a three-dimensional scene on a plane, spherical geometry on 
the surface of a sphere, elliptic and hyperbolic geometries in appropriate 
contexts, finite geometries, algebraic geometries and so on). 
These new frameworks reveal that the ‘appropriate principles of deduction’ may 
differ in different forms of geometry. For instance, in spherical geometry, while 
there is a concept of congruence of spherical triangles, there are no parallel 
lines, and proof is a combination of embodied experience operating on the 
surface of a sphere coupled with symbolic computations using trigonometry. 
In arithmetic and algebra the symbols have a crystalline structure that the child 
may begin to realize through experience of counting collections which are then 
put together or taken away. The sum 8+6 can be computed first by counting, and 
in this context it may not yet be evident that 8+6 gives the same result as 6+8. 
As the child builds more sophisticated relationships, it may later be seen as part 
of a more comprehensive structure in which 8+2 makes 10 and, decomposing 6 
into 2 and 4, gives 8+6 is 10+4, which is 14. One might say that 8+6 or 6+8 or 
10+4 or various other arithmetic expressions equal to 14 are all equivalent, but it 
is cognitively more efficient to say simply that they are the same. Gray and Tall 
(1994) referred to such symbols as different ways of representing a procept, 

 
Figure 2: The broad maturation of proof structures 
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where the symbols can stand dually for a process and the concept output by the 
process. Here the various symbols, 8+6, 10+4, and so on, all represent the same 
underlying procept that operates as the flexible crystalline concept ‘14’. This 
crystalline structure is then used to derive more complex calculations from 
known facts in a deductive knowledge structure. 
Algebra arises as generalized arithmetic, where operations having the same 
effect, such as ‘double the number and add six’ or ‘add three to the number and 
double the result’, are seen as being equivalent; these equivalences give new 
ways of seeing the same underlying procept written flexibly in different ways as 

 and . These equivalences can be described using the rules 
that were observed and described as properties in arithmetic, now formulated as 
rules to define the properties in algebra. Finally, a crystalline concept, ‘an 
algebraic expression’ arises in which equivalent operations are seen as 
representing the same underlying operation. 
Procepts arise throughout the symbolism of mathematics where symbols such as 

, , , dy/dx, ,  dually represent a process of 
computation and the result of that process. Such procepts, along with the 
networks of their deduced properties, form crystalline concepts, which allow the 
human brain to operate flexibly and efficiently in formulating models, solving 
problems through symbol manipulation and discovering new properties and 
connections. 
Crystalline concepts also operate at the formal-axiomatic level. Mathematicians 
construct the successive systems , , , ,  formally using equivalence 
relations, such as defining the integers  as equivalence classes of ordered pairs 
(m,n) where    m,n ∈  and  if . The whole number m 
corresponds to the equivalence class . Successive constructions of , 
,  and  formulate each as being isomorphic to a substructure of the next. 
Cognitively, however, it is more natural to see the successive number systems 
contained one within another, with , , , , seen as points on the x-axis and 
 as points in the plane. This is not a simple cognitive process, however, as such 
extensions involve changes of meaning that need to be addressed, such as 
subtraction always giving a smaller result in  but not in , and a (non-zero) 
square always being positive in  but not in . 
The various number systems may be conceived as a blend of the visual number 
line (or the plane) and its formal expression in terms of axioms. For example, 
the real numbers  have various equivalent definitions of completeness that the 
expert recognizes as equivalent ways of defining the same underlying property. 
The real numbers  now constitute a crystalline concept whose properties are 
constrained by the axioms for a complete ordered field.  
More generally, any axiomatic system, formulated as a list of specific axioms 
uses formal proof to develop a network of relationships that gives the axiomatic 
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system the structure of a crystalline concept. While some may be unique (as in 
the case of a complete ordered field), others, such as the concept of group, have 
different examples that may be classified by deduction from the axioms. 
3.3 A global framework for the development of mathematical thinking 
The full cognitive development of formal proof from initial perceptions of 
objects and actions to axiomatic mathematics can be formulated in terms of 
three distinct forms of development (Tall, 2004, 2008): 

a development of the conceptual embodiment of objects and their properties, with 
increasing verbal underpinning appropriate for the maturation of Euclidean geometry; 
a translation of operations into proceptual symbolism, where a symbol such as  
represents both a process of evaluation, ‘double the number and add three’, and a 
manipulable concept, an algebraic expression; 
the development of axiomatic formalism, in which set-theoretic axioms and definitions 
are used as a basis of a knowledge structure built up through mathematical proof. 

In each form of development, the idea of proof builds through a cycle pictured 
in figure 2 to give the overall framework in figure 3 as proof develops in the 
geometric embodiment, algebraic symbolism, and axiomatic formalism.The 
framework represents the child at the bottom left playing with physical objects, 

 
Figure 3: Three strands of conceptual development: embodied, symbolic, formal. 
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reflecting on their shapes and relationships to build an increasingly sophisticated 
development of Euclidean geometry through constructions, verbalised 
definitions and Euclidean proof. 
In the centre, as the child reflects on his or her actions on objects, there is a 
blend of embodiment and symbolism in which properties such as addition are 
seen visibly to be independent of order (even though the counting procedures 
and visual representations may be different) and are translated into verbal rules 
such as the commutative law of addition. Specific pictures may also be seen as 
generic representations of similar cases, building up generalizations. The 
culmination of this central overlap includes any proof blending embodiment and 
symbolism. 
On the right-hand side, the operation of counting is symbolised as the concept of 
number and, in proceptual symbolic terms, specific instances of arithmetic such 
as  are generalized into an algebraic statement , and 
such generalities are formulated as rules to be obeyed in algebra. 
As the child matures, he or she is introduced to the idea that conceptions based 
in perception and action can be transformed into proof by verbal definition—a 
significant cognitive change that leads to Euclidean proof in geometry and rule-
based proof in algebra. The figure of Plato here represents a view of crystalline 
conceptions that are so perfect that they seem to be independent of the finite 
human brain. 
There is a major cognitive change denoted by the horizontal dotted line from 
inferences based on perception and action to proof based on a definition (of 
figures in geometry and rules of arithmetic in algebra). For instance, in algebra, 
the power rule  for whole numbers m and n can be embodied 
directly by counting the factors, but when m and n are taken as fractions or 
negative numbers, then the idea of counting the factors no longer holds. Now the 
power rule is used as a definition from which the meanings of  and  are 
deduced. This requires a significant shift of meaning from properties based on 
perception to properties deduced from rules.  
The formal world includes all forms of proof based on an appropriate form of 
definition and agreed processes of deduction. These include Euclidean proof 
based on geometric principles such as congruence, algebraic proof based on the 
rules of arithmetic, and axiomatic formal proof. In applications, applied proof 
builds on embodiment and symbolism, developing refined strategies of 
contextual reasoning appropriate to the context. 
A major development in formal proof is the shift to the axiomatic method of 
Hilbert. Now mathematical objects are defined as lists of set-theoretic axioms 
and any other properties must be deduced from the axioms and subsequent 
definitions by formal mathematical proof. 
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This gives a second major cognitive change, from definitions based on familiar 
objects or mental entities—as in the thought experiments of Plato—to formal 
definitions where proofs apply in any context where the required axioms hold—
as in the formal theory of Hilbert. 
At the level of axiomatic formalism, the top right arrow in the figure represents 
the desired development of the student maturing from a range of familiar ideas 
to their organization as formal definitions and proof. The student learning the 
axiomatic method for the first time is faced with a list of axioms from which she 
or he must make initial deductions, building up a knowledge structure of 
formally deduced relationships that leads to the proof of successive theorems. 
Some theorems, called ‘structure theorems’ have special qualities that prove that 
the axiomatic structures have specific embodiments and related embodied 
operations. For instance the structure theorem that all finite dimensional vector 
spaces over F are isomorphic to a coordinate space  reveals that such a 
vector space can be represented symbolically using coordinates and operations 
on vectors that can be carried out symbolically using matrices.  When   F =  , 
the formalism is then related to embodiments in two and three-dimensional 
space. 
In this way, embodiment and symbolism arise once more, now based on an 
axiomatic foundation. Mathematicians with highly sophisticated knowledge 
structures then reflect on new problems, think about possibilities, formulate 
conjectures and seek formal proofs of new theorems in a continuing cycle of 
mathematical research and development. At each stage, this may involve 
embodiment, symbolism and formalism as appropriate for the given stage of the 
cycle. 

4. THE DEVELOPMENT OF PROOF FROM EMBODIMENT 
4.1 From embodiment to verbalization 
Young children have highly subtle ways of making sense of their observations. 
For instance, Yevdokimov (2010) observed that young children playing with 
wooden patterns of different shapes sense symmetry even in quite complicated 
forms and may build their own conceptions of symmetry without any special 
emphasis and influence from adults. However, they experience enormous 
difficulties when attempting to describe a symmetric construction verbally.  
The young child may develop ways to recognise and name different shapes in 
ways that may be quite different from an adult perspective. Two-year old Simon 
learned to recognise and say the name ‘triangle’ for a shape he recognised (Tall, 
2010.) He learnt it through watching and listening to a television programme in 
which Mr. Triangle was one of several characters, including Mr. Square, Mr. 
Rectangle and Mr. Circle where each character had the named shape with a face 
on it and hands and feet attached. 
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When Simon saw a triangle, he named it, but 
then, when playing with some square table mats, 
he put together a 3 by 2 rectangle, a 2 by 2 
square, and then reorganised four squares into an 
upside down T-shape that he called a triangle 
(Figure 4.) Although the figure lacks three sides, 
it is fat at the bottom, thin at the top and 
symmetric about a vertical axis. It is the nearest 
word in his vocabulary to describe what he sees, 
being more like a triangle than any other shape 
that he can name. 
4.2 From embodiment and verbalization to pictorial and symbolic 
representations  
A case of interest is the five-year long study of Maher and Martino (1996), 
which followed the developing ideas of a single child, called Stephanie. This 
revealed the emergence of statements that are precursors of quantifiers (such as 
‘there is an A such that B occurs’ or ‘for all A, B occurs’.) During her third and 
fourth grade, Stephanie and her classmates were given variations of the 
following question, which will be termed the four-cube-tall Tower Problem:  

How many different four-cube-tall towers can be built from red and blue cubes? 

When Stephanie and her partner approached this problem for the first time, she 
started from the search for different four-cube-tall towers using a trial-and-error 
strategy. Namely, she built a tower, named it (e.g. ‘red in the middle’ or 
‘patchwork’), and compared it with all the towers that had been constructed so 
far to see whether it was new or a duplicate. In several minutes, Stephanie began 
to spontaneously notice relationships between pairs of towers and put them 
together. She then called the towers such as the left pair on Figure 5 as 
‘opposites’, and the right pair as ‘cousins’. Maher and Martino interpreted this 
as the beginning of Stephanie’s classification of towers into sets by a local 
criterion. No global organizational criterion emerged at this stage, and 
Stephanie, who eventually constructed all 16 towers, did not know whether or 
not she found them all. When asked about it, she explained that she ‘continued 
to build towers until [she] couldn’t find any that were different’ (p. 204). 

! 
Figure 4: Simon’s Triangle 

 
Figure 5: ‘Opposites’ and ‘cousins’ 
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Eighteen months later, when in the fourth grade, Stephanie was presented with 
the problem concerning the number of five-cube-tall towers that can be built 
from red and yellow cubes. This time she constructed 28 original combinations 
organized in the sets consisting of four elements: some tower, its ‘opposite’, its 
‘cousin’ and ‘the opposite of the cousin.’ Thus, though a global organizational 
principle still remained murky for Stephanie, she progressed from the pure trial-
and-error strategy to trial-and-error strategy combined with the local 
classification strategy. 
A crucial event occurred when the teacher asked the class about the number of 
five-cube-tall towers with exactly two red cubes. In response, Stephanie argued 
that all towers in this category can be accounted by the following organizational 
criterion: there are towers in which two red cubes are separated by no yellow 
cube, one yellow cube, two yellow cubes or three yellow cubes (see Figure 6). It 
is notable that at this stage Stephanie began to draw pictures of the towers she 
produced rather than building them with plastic cubes. 

 
Figure 6: Towers of five with two red and three yellow 

In this episode Stephanie for the first time arrived at an existential algebraic 
statement that required proving. She declared: ‘there exist exactly 10 five-cube-
tall towers with exactly two red cubes.’ Her justification of this statement 
involved an indirect proof by contradiction as she explained: ‘it is not possible 
to have towers with four or more yellow cubes placed between the two red cubes 
without violating the requirement that a tower be only five cubes tall,’ (p. 205). 
One can see here that, though still operating in her embodied mathematical 
world, Stephanie succeeds in substituting her previous local organizational 
criterion (‘opposites’ and ‘cousins’) with a new, all-inclusive or global, one (the 
number of yellow cubes separating the red ones). This invention enabled 
Stephanie to construct—though only for a sub-problem of the five-cube-tall 
Towers Problem—a mathematically valid argument. An important sign of the 
development of the idea of proof in Stephanie is that she was able to mentally 
represent not only what is possible to do with the cubes, but also what is 
impossible. The spirit of a crystalline concept—a concept that has an internal 
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structure of constrained relationships that cause it to have necessary properties 
as part of its context—enters here! 
Two weeks later, two more cognitive advances emerged when Stephanie shared 
with the interviewers her thinking about the six-cube-tall Towers Problem that 
she assigned to herself. The first advance occurred when she introduced a letter-
grid notation for representing the towers, instead of drawing them or assembling 
from the plastic cubes that she used before. This is an important step on her way 
to the symbolic mathematical world. Interestingly, the authors mentioned that, 
when in first grade, Stephanie had used a letter-grid notation for solving another 
combinatorial problem, and then, it seemed, she forgot about it. As Lawler 
(1980) noted, it may seem that a child regresses in knowledge, whereas he or she 
may in fact be attempting to insert new knowledge into an existing knowledge 
structure. (See also Pirie & Kieren, 1994.) 
 Our point here is that the pictorial and later symbolic representations that she 
used were indeed rooted in Stephanie’s embodied world. The second advance 
was that Stephanie started to fluently consider different organizational principles 
for producing the towers in a systematic way. In particular, she introduced a 
method of holding the position of one color when varying positions for another. 
Apparently, the second advance is related to the first one: convenient notation 
makes consideration of various patterns more accessible. These important 
advances eventually led Stephanie to construct a full proof for the four-cube-tall 
Tower Problem (by classifying the towers into five categories: towers with no 
white cube, towers with exactly one cube, etc). We interpret Stephanie’s last 
insight as a verbalisation of the embodied skill to infer cause-effect relationships 
from statistical patterns: Stephanie found that the answers for three-, four-, and 
five-cube-tall towers were 8, 16, and 32 respectively, and just expressed her 
belief that this numerical pattern will work forever. Such a guess is statistically 
justified for Stephanie, and is appropriate at her stage of development. In the 
fifth grade she is only just beginning to transfer embodied proof concepts into a 
symbolic mathematical form. 
4.3 From embodiment, verbalization and symbolism to deductions 
The experiences just described offer an example of a learner building up 
increasingly sophisticated knowledge structures by physical experiment with 
objects, finding ways to formulate similarities and differences, then representing 
the data observed using drawings and symbols that have an increasingly 
meaningful personal interpretation. In this section we discuss the general 
principles underpinning a learner’s path towards deductive reasoning from its 
sensori-motor beginnings, through the visual-spatial development of thought and 
on to the verbal formulation of proof, particularly in Euclidean geometry. 
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As the child matures, physical objects, experienced through the senses become 
associated with pictorial images, and develop into more sophisticated knowledge 
structures that Fischbein (1993) named figural concepts. These are 

mental entities […] which reflect spatial properties (shape, position, magnitude) and, at 
the same time, possess conceptual qualities like ideality, abstractness, generality, 
perfection. (Fischbein, 1993, p.143.) 

Figural concepts reflect the human embodiments that underlie our more abstract 
formal conceptions. 
Cognitive science sees the human mental and physical activity underlying all 
our cognitive acts (Johnson 1987, Lakoff & Johnson, 1999, Lakoff & Núñez, 
2000). For example, the schema of ‘containment’ where one physical object 
contains another underlies the logical principle of transitivity ,  
implies  and operates mentally to infer that if A is contained in B and B is 
contained in C, then A must be contained in C. Even Hilbert—on the occasion 
declaring his famous 23 problems at the International Congress of 1900—noted 
the underpinning of formalism by visual representation, picturing transitivity as 
an ordering on a visual line: 

Who does not always use along with the double inequality a > b > c the picture of three 
points following one another on a straight line as the geometrical picture of the idea 
‘between’? (Hilbert, 1900.) 

Empirical evidence in support of this can be found throughout the literature. 
Byrne and Johnson-Laird (1989) studied adults responding to tasks in which 
they were given verbal evidence of relative positions of objects placed on a table 
and found that the subjects used visual mental models rather than a pure logical 
approach to produce their deductions. 
The other side of the coin suggests that a mismatch between images (schemata) 
and formal definitions of mathematical concepts can be a source of difficulty in 
the study of mathematics and mathematical reasoning. For instance, Tall and 
Vinner (1981) illustrated how students may interpret real analysis based on their 
concept imagery of earlier experiences rather than on formal definitions. 
Hershkowitz and Vinner (1983) similarly revealed how particular attributes of 
pictures interfere with the general conceptualization process in geometry. 
In a similar way, Núñez, Edwards and Mato (1999) suggested that the epsilon-
delta approach to continuity is problematic for students because it conflicts with 
natural embodied conceptions of continuity. The problem, however, is more 
subtle, because formalism only captures specific explicit properties, such as the 
‘closeness’ of natural continuity formulated in the epsilon-delta definition. 
Natural continuity also involves other relevant aspects such as as the 
completeness of the real numbers and the connectedness of the domain. 
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Sometimes, the practice of generalizing from empirical findings or building 
argument from intuitively appealing images leads to a possibility that happens to 
be wrong. As an example of a situation where valid deductive argument is 
applied to a plausible, but wrong image, we give a ‘proof’ that every triangle is 
isosceles. Kondratieva (2009) used this example in order to illustrate the process 
of learning the art of deduction through the analysis of unexpected or 
contradictory results. 

Consider an arbitrary triangle ABC. Let the point of intersection of the bisector of the 
angle B and the perpendicular bisector of the side AC meet in the point M. For 
simplicity, assume that M lies inside of the triangle (figure 7). 

 
Figure 7: Proof that all triangles are isosceles 

Let points K and L be the feet of perpendiculars dropped from M to the sides adjacent to 
vertex A. In the triangles BMK, BML, the side BM is common; the angles KBM and 
LBM are equal, as are the right angles BKM, BLM. Therefore, triangles BMK, BLM are 
congruent, and BK = BL. The right-angled triangles AKM and CLM are also congruent 
because the legs MK=ML, and their hypotenuses are equal AM = CM by the property of 
the perpendicular bisector. Thus, AK = CL. Finally, AB = AK + KB = CL + LB = CB. 
Hence the triangle ABC is isosceles. QED. 

Students often perceive the figure to be legitimate and concentrate on looking 
for mistakes in the argument. The deductions concerning congruency in this 
proof are supported by reference to appropriate theorems and appear to be 
correct. It is often a surprise for a student to realise that the actual fallacy arises 
through drawing M inside the triangle when it should be outside, more precisely 
on the triangle’s circumcircle. 
Such examples have the potential to prepare the learner for the need to doubt 
representations and arguments that seem intuitively valid. This can lead to 
several different ways of emphasizing different aspects of proof. 
The first is to realize that correct reasoning based on a misleading (incorrect) 
diagram can lead to false conclusions. Thus, in mathematical derivations we 
must attend to both the deduction and the assumption(s). 
The second is to illustrate the idea of a proof by contradiction. For instance, 
consider the statement: ‘The intersection point of an angular bisector and the 
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right bisector of the opposite side in any triangle lies outside the triangle.’ 
Drawing a picture purporting to represent the contrary situation where the 
intersection lies inside the triangle, as in figure 7, can then be seen as leading to 
the impossible statement that ‘all triangles are isosceles’. 
The third possibility is to introduce the concept of a direct constructive proof by 
inviting the student to perform the construction using dynamic software and 
arguing why the point M must lie outside the triangle. (Dynamic software is 
further discussed in chapter XXX.) 
The need for a more reliable proof leads to the idea of deductive reasoning, 
which may be seen as the ability of an individual to produce new statements in 
the form of conclusions from given information, particularly in areas where the 
subject has no prior knowledge other than the information given. The new 
statements must be produced purely by reasoning with no simultaneous access 
to hand-on materials and experimentation. However, such methods require the 
individual to build a knowledge structure that enables the use of logical forms of 
deduction. As we analyse Euclidean geometry, we find that its deductive 
methods build on ways of working that are themselves rooted in human 
embodiment. 

5. EUCLIDEAN AND NON-EUCLIDEAN PROOF 
5.1 The development of Euclidean Geometry 
From a mathematician’s viewpoint, the study of Euclidean geometry in school 
has often been considered as providing a necessary basis for the formal notion of 
proof and, in particular, the building of a succession of theorems deductively 
from basic assumptions. From a cognitive viewpoint it is our first example of the 
long-term development of crystalline concepts. Beginning from personal 
perceptions and actions, the learner may build personal knowledge structures 
relating to the properties of space and shape, then develop definitions and 
deductions to construct the crystalline platonic objects of Euclidean geometry. 
Even though the books of Euclid produce a sequence of successively deduced 
propositions based on specified common notions, definitions and postulates, a 
closer inspection reveals the use of principles based on human perception and 
action. For example, the notion of congruence involves the selection of certain 
minimal properties that enable triangles to be declared to have all their 
properties in common, in terms of requiring only three corresponding sides 
(SSS), two sides and included angle (SAS), or two angles and corresponding 
side (AAS). All are based on an embodied principle of superposition of one 
triangle upon another (perhaps turning it over). This concept of congruence of 
triangles is not endowed with a specific name in the Books of Euclid. It is used 
as an established strategy to formulate minimal conditions under which different 
triangles are equivalent and consequently have all the same properties. 
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Parallel lines are another special concept in Euclid, defined to be straight lines 
which, being in the same plane and being produced indefinitely in both 
directions, do not meet one another in either direction (Euclid, Book I, 
Definition 23). Using this definition, Euclid establishes various (equivalent) 
properties of parallel lines, such as alternate angles being equal to one another, 
corresponding angles being equal, and the sum of the interior angles being equal 
to two right angles (Proposition 27 et seq.). Once more the concept of parallel 
lines is a crystalline concept with a range of interlinked properties each of which 
can be used to furnish a Euclidean proof of the others. 
The development of geometry, starting at Euclid Book I, has been declared 
inappropriate for young children: 

The deductive geometry of Euclid from which a few things have been omitted cannot 
produce an elementary geometry. In order to be elementary, one will have to start from a 
world as perceived and already partially globally known by the children. The objective 
should be to analyze these phenomena and to establish a logical relationship. Only 
through an approach modified in this way can a geometry evolve that may be called 
elementary according to psychological principles (van Hiele Geldof, 1984, p. 16). 

Some enlightened approaches to geometry have attempted to integrate it with 
broader ideas of general reasoning skills including the need for clear definitions 
and proof. For example, Harold Fawcett, the editor of the 1938 NCTM 
Yearbook on Proof, developed his own high school course that he taught at the 
University School in Ohio State entitled The Nature of Proof. His fundamental 
idea was to consider any statement, to focus on words and phrases, to ask that 
they be clearly defined, to distinguish between fact and assumption, and to 
evaluate the argument, accepting or rejecting its arguments and conclusion, 
while constantly re-examining the beliefs that guided the actions. Speaking 
about the course at an NCTM meeting in 2001, Frederick Flener observed: 

Throughout the year, the pupils discussed geometry, creating their own undefined terms, 
definitions, assumptions and theorems. In all he lists 23 undefined terms, 91 definitions, 
and 109 assumptions/theorems. The difference between an assumption and a theorem is 
whether it was proved. Briefly, let me tell you a few of the undefined terms which the 
pupils understood, but were unable to define. For example, as a class they couldn’t come 
up with ‘the union of two rays with a common endpoint’ as the definition of an angle, so 
they left it as undefined. Nor could they define horizontal or vertical, or area or volume. 
Yet they went on to define terms like dihedral angle, and the measure of a dihedral 
angle—which I assume involved having rays perpendicular to the common edge (Flener, 
2001). 

A detailed study of the students who attended this course revealed significant 
long-term gains in reasoning skills over a lifetime (Flener, 2006). This suggests 
that making personal sense of geometry and geometric inferences can have long-
term benefits in terms of clarity of thinking and reasoning skills. 
Modern trends in teaching have led to encouraging young children to build a 
sense of shape and space by refining ideas through experience, exploring the 
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properties of figures and patterns. They experiment with geometrical objects, 
seek to recognize the properties of card shapes, sketch the faces of a box when 
pulled out into a flat figure, fold paper, measure the angles and sides of a 
triangle, and discuss their ideas with friends or teachers. 
They may have experiences in constructing and predicting what occurs in 
geometric software such as Logo in ways that give figural meanings to 
geometric ideas. For instance, a ‘turtle trip’ round a (convex) polygon, may 
enable the child to sense that ‘If the turtle makes a trip back to its starting state 
without crossing its own path, the total turn is 360 degrees.’ According to Papert 
(1996), this is a theorem with several important attributes: first, it is powerful; 
second, it is surprising; third, it has a proof. It is not a theorem in the formal 
mathematical sense, of course, but it is a meaningful product of human 
embodiment, sensing a journey round a circuit and ending up facing the same 
direction, thus turning through a full turn. 
These experiences provide young children with preliminary background on 
which to develop ideas of proof in a variety of ways. For example, it is possible 
to experience many ways in which children may attempt to provide a proof for 
the statement that the sum of the interior angles of a triangle is 180°. 
In the studies of Lin, Cheng et al. (2003), Healy and Hoyles (1998), and Reiss 
(2005), eight distinct proofs were collected from students before they had any 
formal introduction to Euclidean proof as a deductive sequence of propositions. 
The first two are pragmatic actions applied to specific cases: 
Proof 1: by physical experiment (Figure 8). 

Take a triangle cut out of paper, tear off the 
corners and place them together to see that they 
form a straight line. Do this a few times for 
different triangular shapes to confirm it.  

Figure 8 
 
Proof 2: by practical measurement (Figure 9). 

Draw a triangle. Measure the angled to check that 
the sum is equal to 180°. Repeat the same process 
on other triangles. 

 
Figure 9 

 
A third proof is a dynamic embodiment, which arises in Logo: 
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Proof 3: the turtle-trip theorem: imagine walking round a triangle (Figure 10). 
Start at any point P and walk all the way round. 
This turns through 360°. At each vertices, the sum 
of exterior and interior angles is 180° so the sum of 
the three exterior and interior angles is 540°. 
Subtract the total 360° turn to leave the sum of the 
interior angles as 540°–360° = 180°. 

 
Figure 10 

 
A fourth proof uses a known fact about triangles to infer another fact. 
Proof 4: Use the fact that the exterior angle equals the sum of the two interior 
opposite angles (Figure 11). 

Extend the segment CA; the exterior angle  is 
equal to the sum of the two interior opposite angles. 
Because the exterior angle and  make a 
straight line, the sum of all three angles is 180°. 

 
Figure 11 

 
The fifth and sixth proofs introduce additional parallel lines. 
Proof 5: A proof using parallel lines (Figure 12). 
1. Draw a line parallel to AB through point C. 

2.  (alternate angles) and  
(corresponding angles) 

3. . 
 

Figure 12 
 
Proof 6: A second proof using parallel lines 
(Figure 13). 
1. Draw a line L parallel to BC through point A. Then 

 and  (alternate angles). 
2. Hence 

.  
Figure 13 

 
The seventh uses a property of the circle. 
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Proof 7: Using a property of angles subtended by a chord 
(Figure 14). 

The angle at the circle is half the angle at the centre, so 
, , . 

Adding these together: 
.  

Figure 14 

Proof eight appeals to the more general form of the angle sum of an n-sided 
polygon, either as a consequence of the turtle trip theorem, or simply by 
substitution in the general formula. 
Proof 8: An n-sided (convex) polygon has angle sum   n ×180° − 360°  (Figure 
15). 

Put  in the general formula to get the angle sum 
for a triangle is 180°. 

 
Figure 15 

These eight solutions reveal a broad hierarchy. Proofs 1 and 2 are embodied 
approaches, the first by a physical process of putting the angles together (in a 
manner that may have been suggested to them earlier), the second by measuring 
a few examples. Proof 1 contains within it the seeds of more sophisticated 
proofs 5 and 6 using the Euclidean idea of parallel lines. Proof 3 (and its 
generalization to a polygon used in proof 8) are dynamic proofs that do not arise 
in the static formal geometry of Euclid and yet provide a dynamic embodied 
sense of why the theorem is true. Proof 4, relating to the exterior angle property, 
nicely links two properties of a triangle and yet, an expert may know that these 
are given as equivalent results from a single theorem of Euclid (Book 1, 
proposition 32): 

In any triangle, if one of the sides be produced, the exterior angle is equal to the two 
interior and opposite angles, and the three interior angles of the triangle are equal to two 
right angles. 

Though some experts, looking at this proof from a formal viewpoint, may see it 
relating two equivalent properties in a circular manner, it is a natural connection 
for a student to make in the early stages of building a knowledge structure of 
relationships in geometry (Housman & Porter, 2003; Koichu, 2009). 
Proofs 5 and 6 are in the spirit of Euclid, constructing a parallel line and using 
established propositions concerning parallel lines to establish the theorem. 
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However, here they are more likely to involve an embodied sense of the 
properties of parallel lines than the specific formal sequence of deductions in 
Euclid Book I. 
Proofs 7 and 8 both use more sophisticated results to prove simple consequences 
and have a greater sense of a general proof. And yet one must ask oneself, how 
does one establish the more general proof in the first place? While networks of 
theorems may have many different paths and possible different starting points, 
the deeper issues of sound foundations and appropriate sequences of deductions 
remain. 
It has long been known that students have difficulty reproducing Euclidean 
proof as a sequence of statements where each is justified in an appropriate 
manner. Senk (1985) showed that only 30% of students in a full-year geometry 
course reached a 70% mastery on a set of six problems in Euclidean proof. 
Given the perceived difficulties in Euclidean geometry, the NCTM Standards 
(2000) suggested that there should be decreased attention to the overall idea of 
geometry as an axiomatic system and increased attention on short sequences of 
theorems. These can in themselves relate to Papert’s notion that a theorem 
should be powerful, surprising, and have a proof. Two examples include the 
theorem that two parallelograms on the same base and between the same 
parallels have the same area, even though they may not look the same, and the 
theorem that the angles subtended by a chord in a circle are all equal (Figure 16). 

 
Figure 16: Interesting theorems 

Here, short sequences of construction are possible. For instance, in the area of 
parallelograms, one may prove that the triangles ADD' and BCC' are congruent 
and that each parallelogram is given by taking one of these triangles from the 
whole polygon ABC'D'. The equalities of the angles subtended by a chord is 
established by constructing the angle at the centre of the circle and proving that 
it is twice the angle at the circle. 
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5.2 The Beginnings of Spherical and Non-Euclidean Geometries 
The teaching of non-Euclidean geometries is not central in the current 
curriculum, but practical experience in such geometries is becoming part of the 
development of college mathematics in the USA. 

College-intending students also should gain an appreciation of Euclidean geometry as 
one of many axiomatic systems. This goal may be achieved by directing students to 
investigate properties of other geometries to see how the basic axioms and definitions 
lead to quite different – and often contrary – results. (NCTM Standards, 1989, p.160.) 

Although spherical geometry goes back to the time of Euclid, it does not share 
the axiomatic tradition developed in plane geometry. Spherical geometry may be 
approached as a combination of embodiment and trigonometric measurement. 
One may begin with the physical experience of operating on the surface of a 
sphere (say an orange, or a tennis ball with elastic bands to represent great 
circles). This produces surprising results quite different from the axiomatic 
geometry of Euclid. When exploring spherical triangles whose sides are great 
circles, the learner may find a new geometry that shares properties predicting 
congruence (SAS, SSS, AAS), but is fundamentally different from plane 
Euclidean geometry, in that parallel lines do not occur and the angles of a 
triangle always add up to more than 180°. 
This can be proved by a combination of embodiment and trigonometry. Figure 
17 shows a spherical triangle ABC produced by cutting the surface with three 
great circles. It has a corresponding 
triangle A'B'C' where the great circles 
meet on the opposite side of the sphere 
having exactly the same shape and area. 
The total area of the shaded parts of the 
surface between the great circles through 
AB and AC can be seen by rotation about 
the diameter AA' to be  of the total 
area, where  denotes the size of the 
angle A measured in radians. This area is 

. The same happens 
with the slices through B and through C 
with area  and . These three 
areas cover the whole surface area of the 
sphere and all three overlap over the 
triangles ABC and A'B'C'. Adding all three together, allowing for the double 
overlap gives the surface area of the sphere as 

 
where  is the area of the spherical triangle ABC. This gives the area  as 

 and the sum of the angles as 

 
Figure 17: Area of a spherical triangle 
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α + β + γ = π +

Δ
r 2

. 

The experience challenges learners to rethink the ‘deductive arguments’ given 
above that the sum of the angles of a triangle is 180° when the sum of the angles 
of a spherical triangle is always more by a quantity proportional to its area. 
In long-term implementations with in-service teachers and university students, 
learners report that they could not have developed concepts and the arguments 
without access to materials to handle and dynamic geometry sketches to explore 
the tasks. In short, this provides evidence for the continuing role for embodied 
experience in the cognitive development of proof in adults. Examples of such an 
approach arise in the book Experiencing Geometry (Henderson & Tamina, 
2001) and the work of Lénárt (2003), encouraging comparison of concepts and 
reasoning in spherical geometry and plane geometry, through practical activities 
such as handling spheres or folding paper. These explorations give an emphasis 
to transformations and symmetry, matching the ‘modern’ definition of geometry 
of Klein (1879) and offer a setting for increasingly sophisticated reflections on 
two distinct embodied geometries. The similarities and contrasts between the 
two structures provoke a reflective reworking of unexamined concepts such as 
‘straight lines’ and ‘angles’ and also of principles related to ‘congruence of 
triangles’ and the properties of ‘parallel lines’. 
Other geometries may be studied, perhaps as axiomatic systems, but more often 
as a combination of embodiment and symbolism. For instance, projective 
geometry of the plane can be studied using embodied drawing or symbolic 
manipulation of homogeneous coordinates. Non-Euclidean geometries include 
the Poincaré model of hyperbolic geometry in the upper half plane where 
‘points’ are of the form  for y > 0 and ‘lines’ are semi-circles with centre 
on the x-axis; two ‘lines’ are said to be ‘parallel’ if they do not meet. In this new 
context, students must reflect on new meanings to make deductions dependent 
upon the definitions in the new context (Neta et al., 2009). 

6. SYMBOLIC PROOF IN ARITHMETIC AND ALGEBRA 
As the mathematics becomes more sophisticated, increasingly subtle forms of 
proof develop in arithmetic and algebra. They build from demonstrations or 
calculations for single examples, to considering a specific example to represent a 
generic proof that applies to all similar cases, and then to general proofs 
expressed algebraically. Induction proofs can operate at two distinct levels, one 
the potentially infinite process of proving a specific case and repeating a general 
step as often as is required, the second involving a three stage proof that 
compresses the potentially infinite repetition of steps to a single use of the 
induction axiom in a more formal setting. 
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6.1 The increasing sophistication of proof in arithmetic and algebra 
An example of such successively sophisticated forms of proof is the Gauss Little 
Theorem that is reputed to have been produced by the schoolboy Gauss when 
his teacher requested the class to add up all the whole numbers from 1 to 100. 
Approach 1: 
specific arithmetical calculation 
(only works for even numbers): 

Approach 2: 
generic arithmetical argument (n =100) 
(works for all numbers even and odd): 

  

Approach 3: generic pictorial argument 

 
The sum 1 +…+ n is half of  

Approach 4: algebraic proof (for any ) 

 

Approach 5: a potentially infinite proof by induction (for any n so far) 
 is true for , because . 

If it is true for  n = k , use the formula  and add   k +1  to both sides to 
deduce the truth for   n = k +1, 
and then repeat this general step as often as is required: 
It is true for  hence it is true for ,  hence for , hence for , …   
and so on for any specific whole number ... (ad infinitum). 
Approach 6: a finite proof by the Peano axioms (for all n) 
The Peano axioms define natural numbers as a set satisfying the following conditions: 

• There is a natural number 1. 
• Every natural number a has a natural number successor, denoted by s(a). 
• Distinct natural numbers have distinct successors: if a ≠ b, then s(a) ≠ s(b). 
• 1 is not the successor to any natural number. 
• If A is a sub-set of natural numbers containing 1 and if the successor of any number in 

A is also in A, then A contains all the natural numbers. 
Let us now prove the formula. 
Let A be a subset of natural numbers such that for any  . 
1. Prove, by substitution in the formula, that . 
2. If  then use the formula for k as above to show that . 
3. Observe that A satisfies the Peano axioms, and thus, is the whole of . 

Figure 18: Proofs of the formula for the sum of the first n whole numbers 

These successive proofs are not all as successful in giving meaning to students. 
Rodd (2000) found that both the generic pictorial and algebraic proofs made 
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more sense to the students because they gave a meaningful explanation as to 
why the proof is true, while the formal proof by induction is more obscure 
because it seems to use the result of the proof (assuming P(n) for a specific n to 
prove P(n+1)) during the proof itself. In addition, the finite proof by induction 
(Proof 6) may cause further problems because, although it has only three steps, 
the set defined by the Peano axioms must itself be infinite. 
6.2 Proof by contradiction and the development of aesthetic criteria 
On one hand, it is well established that proving by contradiction is problematic 
for many students (e.g. Tall, 1979; Leron, 1985; Epp, 1998; Reid & Dobbin, 
1998; Antonioni, 2001). On the other hand, Freudenthal (1973, p. 629) notes 
that indirect proof arises spontaneously in young children in statements such as 
‘Peter is at home since otherwise the door would not be locked’. Such a 
phenomenon occurred with Stephanie (see section 4.2) where she observed that 
it is not possible to have a tower of five cubes to have four or more yellow cubes 
placed between two red cubes. 
The full notion of proof by contradiction (to prove P, assume P is false and 
deduce that this leads to a contradiction) is an altogether more problematic mode 
of proving as the prover must simultaneously hold a falsehood to be true and 
attempt to argue why it is false while in a state of stress. Leron (1985) suggests 
that it is preferable to reorganise a contradiction proof so that it initially involves 
a positive construction and the contradiction is postponed to the end. For 
instance, in order to prove there is an infinite number of primes, start by proving 
positively that given any finite number of primes one can always construct 
another one, then—and only then—deduce that, if there is only a finite number 
of primes, then this would lead to a contradiction. 
A similar technique is to use a generic proof. For instance, rather than prove that 
√2 is irrational by contradiction, first prove that if one squares a rational number 
where denominator and numerator are factorised into different primes, then its 
square has an even number of each prime factor in the numerator or 
denominator. Then, and only then, deduce that √2 cannot be a rational because 
its square is 2, which only has an odd number of occurrences of the prime 2. (At 
a formal level, we note that this proof is dependent on the uniqueness of 
factorization into primes, but this is not a concern that occurs to students on first 
acquaintance with the proof.) 
Tall (1979) presented a choice of two proofs: the contradiction proof that √2 is 
irrational and the generic proof that √(5/8) is irrational because 5/8 contains an 
odd number of 5s and also an odd number of 2s in its prime factorization. The 
generic proof has explanatory power that generalizes easily while the 
contradiction proof is both problematic and not easily generalized. Students 
significantly preferred the generic proof over the contradiction proof and even 
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among students who were already familiar with the contradiction proof, their 
preference for the generic proof increased over a period of days. 
The process of turning all contradiction proofs to more direct proofs with a later 
contradiction, however, may not be profitable in the long-term as proofs by 
contradiction are central to mathematical analysis. This suggests that direct 
proofs will be helpful in the early stages, but there is a need to shift to the use of 
contradiction proofs to enable the student to build more powerful knowledge 
structures that are sufficiently robust for more advanced mathematical analysis. 
Dreyfus and Eisenberg (1986) found that mathematicians comparing different 
proofs of the irrationality of √2 ranked the proofs by contradiction that lack the 
need for prerequisite knowledge as elegant and appropriate for their teaching. 
They also found that college students had not yet developed the sense of 
aesthetics of a proof and proposed that such a sense should be encouraged. 
Koichu and Berman (2005) found that gifted high school students, who were 
asked to prove the Steiner-Lehmus theorem (‘If the bisectors of two angles of a 
triangle are equal, then it is an isosceles triangle’), could fluently operate in the 
mode of proving by contradiction. In addition, they manifested the developed 
aesthetic sense, by their incentive to find the most parsimonious proof. For 
instance, they realized that it was possible to build a concise proof that used the 
minimum of prerequisite knowledge. However, in the pressure of a contest, they 
found that the brute force of using well-rehearsed procedures could prove to be 
more efficient if less aesthetic. 
The development of more sophisticated insight into proof reveals the fact that 
the use of contradiction requires the propositions involved to be either true or 
false with no alternative. More general forms of logic are possible, for instance 
allowing an extra alternative that a theorem might be undecideable (it could be 
true, but the truth cannot be established in a finite number of steps), or there may 
be different gradations between absolute truth and absolute falsehood. This 
might occur in multi-valent logic allowing in-between possibilities between 0 
(false) and 1 (true). It also occurs when a conjecture is formulated, which may 
be considered ‘almost certain’, ‘highly probable’, ‘fairly likely’ or some other 
level of possibility prior to the establishment of a formal proof. 

7. AXIOMATIC FORMAL PROOF 
Formal proof, as introduced earlier in section 2.1, refers either to a precise 
logical form as specified by Hilbert or to forms of proof used by mathematicians 
to communicate to each other in conversation and in journal articles. We begin 
by considering the undergraduate development in formal proof as part of the 
long-term cognitive growth of proof concepts from child to adult. The nature of 
undergraduate development will be further studied in chapter XXX. 
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7.1 Student development of formal proof 
Initial student encounters with formal proof can occur in a number of ways. At 
one end of the spectrum is the Moore method in which students are given basic 
definitions and theorems and encouraged to seek proofs for themselves. R. L. 
Moore reckoned that ‘That student is taught the best who is told the least’ 
(Parker, 2005). He produced a rich legacy of graduates in mathematics who 
advanced the frontiers of research, producing a phenomenon consistent with the 
long-term success of Fawcett’s open-ended approach to geometry in school. 
When students are introduced to formal proof in a university pure mathematics 
course, the objective is for them to make sense of formal definitions in a way 
that can be used for deduction of theorems. Pinto (1998) found that there was a 
spectrum of approaches in an analysis course, which she classified in two main 
groups: those who gave meaning to the definition from their current concept 
imagery, and those who extracted meaning from the definition by learning to 
reproduce it fluently and studying its use in proofs presented in class. She found 
that both approaches could lead to the building of successful formal knowledge 
structures but that either could break down as a result of conflict between 
previous experience and the theory, or through the sheer complexity of the 
definitions that could involve three or more nested quantifiers. 
These observations are consistent with the work of Duffin and Simpson (1993, 
1995) who distinguished between ‘natural’ approaches to describe a new 
experience that fits a learner’s current mental structures, ‘alien’ approaches 
when the learner finds no connection with any of his or her internal structures, 
and ‘conflicting’ when the learner realizes the experience is inconsistent with 
them. 
Pinto and Tall (1999) used the terms ‘natural’ to describe the process of 
extracting meaning and ‘formal’ for the process of giving meaning by working 
with the formal deductions. To the categories ‘natural’ and ‘formal’, Weber 
(2004) added the notion of ‘procedural’ learning for those students who simply 
attempted to cope with formal definitions and proof by learning them by rote. 
Alcock and Weber (2004) later classified the responses of students into 
‘semantic’ and ‘syntactic’, using terms from linguistics that essentially refer to 
the meaning of language (its semantic content) and the structure of the language 
(its syntax). They described a syntactic approach as one in which ‘the prover 
works from a literal reading of the involved definitions’ and a semantic 
approach ‘in which the prover also makes use of his or her intuitive 
understanding of the concepts.’ These are broadly consistent (though not 
identical) with the extracting and giving of meaning and the related categories of 
‘formal’ and ‘natural’. 
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This reveals the complexity that students face in attempting to make sense of 
formal mathematical theory. Overall, it may be seen as a journey making sense 
of axiomatic systems by natural or formal means, beginning with specific 
axioms and seeking to construct a more flexible knowledge structure. For 
instance, one may begin with the definition of completeness in terms, say, of an 
increasing sequence bounded above having a limit, and then deduce other 
properties such as the convergence of Cauchy sequences or the existence of a 
least upper bound for a non-empty subset bounded above. All of these properties 
may then be seen to be equivalent ways of defining completeness, with the 
ultimate goal being the conception of a complete ordered field as a crystalline 
concept having a tight coherent structure with the various forms of completeness 
being used flexibly as appropriate in a given situation. 
In this way, expertise develops as hypothesized in figure 3, from the students’ 
previous growing experience, shifting from description to formal definition, 
constructing links through formal proof, establishing the equivalence of various 
definitions, and then building increasingly flexible links to construct crystalline 
concepts that can be mentally manipulated in flexible ways. 
Evidence for this further development was given by Weber (2001) who 
investigated how four undergraduates and four research students responded to 
formal problems, such as the question of whether there is an isomorphism 
between the group of integers Z under addition and the group Q of rational 
numbers under addition. None of the four undergraduates could provide a formal 
response but all four graduates were able to do so. While the undergraduates 
attempted to deal with the proof in terms of definition to find a bijection that 
preserved the operation, the graduates used their more flexible knowledge 
structures to consider whether an isomorphism was even possible. 
Some undergraduates focused on their memory that Z and Q have the same 
cardinal number and so already had a bijective correspondence between them. 
They had part of the idea—a bijection—but not a bijection that respected the 
operation. Meanwhile the graduates used their wider knowledge structures, 
including a wider repertoire of proving strategies, to suggest possible ways of 
thinking about the problem. For instance, one immediately declared that Q and 
Z could not be isomorphic, first by speculating that Q is dense but Z is not, then 
that ‘Z is cyclic, but Q is not’ (meaning that the element 1 generates the whole 
of Z under addition but no element in Q does so). 
7.2 Structure Theorems and new forms of Embodiment and Symbolism in 
Research Mathematics 
In the process of building formal knowledge structures, certain central theorems 
play an essential role. These are structure theorems. They state that an axiomatic 
structure has certain essential properties which can often involve enriched visual 
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and symbolic modes of operation that are now based not on naïve intuition but 
on formal proof. Typical examples are: 

An equivalence relation on S corresponds to a partition of S. 
A finite group is isomorphic to a subgroup of a group of permutations. 
A finite dimensional vector space over a field F is isomorphic to . 
A field contains a subfield isomorphic to  or to    n

. 
An ordered field contains a subfield isomorphic to . 
An ordered field extension K of  contains finite and infinite elements and any finite 
element is of the form  where   c ∈  and  is infinitesimal. 

Such theorems enable research mathematicians to develop personal knowledge 
structures that operate in highly flexible ways. Some build formally, others 
naturally, as observed by the algebraist Saunders MacLane (1994) speaking of a 
conversation with the geometer Michael Atiyah: 

For MacLane it meant getting and understanding the needed definitions, working with 
them to see what could be calculated and what might be true, to finally come up with 
new ‘structure’ theorems. For Atiyah, it meant thinking hard about a somewhat vague 
and uncertain situation, trying to guess what might be found out, and only then finally 
reaching definitions and the definitive theorems and proofs. 

This division between those ‘preoccupied with logic’ and those ‘guided by 
intuition’ was noted long ago by Poincaré (1913), citing Hermite as a logical 
thinker who ‘never evoked a sensuous image’ in mathematical conversation and 
Riemann as an intuitive thinker who ‘calls geometry to his aid’ (p. 212). 
Such ‘intuition’ used by mathematicians relates to deeply embedded subtle 
linkages in their own personal knowledge structures that suggest likely 
relationships before they may be amenable to formal proof. Formal proof is the 
final stage of research in which the argument is refined and given in a deductive 
manner based on precise definitions and appropriate mathematical deductions. 
Making sense of mathematics requires more: 

Only professional mathematicians learn anything from proofs. Other people learn from 
explanations. A great deal can be accomplished with arguments that fall short of proofs 
(Boas, 1981.) 
If mathematics were formally true but in no way enlightening this mathematics would 
be a curious game played by weird people (Rota, 1997). 

Burton (2002) interviewed seventy research mathematicians (with equal 
numbers of males and females) to study a range of aspects under headings such 
as thinking styles, socio-cultural relatedness, aesthetics, intuition and 
connectivities. She initially hypothesized that she would find evidence of the 
two styles of thinking formulated above (which she described as visual and 
analytic) and that mathematicians would move flexibly between the two. 
However, her analysis of the data showed a more complex situation that she 
organised into three categories—visual (thinking in pictures, often dynamic), 
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analytic (thinking symbolically, formalistically) and conceptual (thinking in 
ideas, classifying). The majority of those interviewed (42/70) embraced two 
styles, a small number (3/70) used all three and the rest referred only to one (15 
visual, 3 analytic and 7 conceptual). Rather than a simple dualism, this suggests 
a range of thinking styles used in various combinations. 
This finer analysis remains consistent with the broad framework of embodiment, 
symbolism and formalism, while revealing subtle distinctions. The research 
cycle of development builds on the experiences of the researchers and involves 
exploration in addition to formal proof. The visual category is concerned with 
embodiment in terms of ‘thinking in pictures, often dynamic’. The analytic 
category specifically describes ‘thinking symbolically, formalistically’. The 
conceptual category refers to ‘thinking in ideas’, which occurs at an exploratory 
phase of a cycle of research, while ‘classifying’ relates to classifying structures 
that satisfy an appropriate definition. These definitions may vary in their origins, 
as verbally defined embodiments, symbolic concepts related to rules of 
operation, or formally defined concepts that may then be proved to have a given 
structure. For instance simple groups are defined formally but their classification 
may be performed using structural properties such as generators and relations 
rather than formal proof as a sequence of quantified statements. 
Applied mathematicians develop contextually based inference in their area of 
expertise, often based on embodiment of situations, translated into some kind of 
symbolism (such as systems of algebraic or differential equations) to manipulate 
and predict a solution. 
Research mathematicians have a variety of ways of thinking creatively to 
develop new theorems. Byers (2007) observed that true creativity arises out of 
paradoxes, ambiguities and conflicts that occur when ideas from different 
contexts come into contact. This encourages mathematicians to attempt to make 
sense of the problem, thinking about possibilities, suggesting possible 
hypotheses, making new definitions, and seeking mathematical proofs. 
In creating new mathematical theorems, mathematicians will work not only 
according to their personal preferences, but also with respect to the particular 
mathematical context. The possible combinations of embodiment, symbolism 
and formalism lead to a variety of techniques in which a particular activity may 
lean towards one or more modes of operation appropriate to the situation. 
Mathematical proof at the highest level is an essential part of the story of 
development, with differently oriented mathematicians having different ways of 
thought but sharing common standards as to the need for proof to establish a 
desired result. However, a mathematical proof is not the end of the story, it is the 
full stop at the end of a paragraph, a place to pause and celebrate the proof of a 
new theorem which, in turn, becomes the launching pad for a new cycle of 
research and development. 
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8. SUMMARY 
In considering the development of proof from the child to the adult and the 
mathematical researcher, we have embraced a wide range of viewpoints that 
relate directly to the ideas of proof and proving. Overall, however, we see the 
cognitive development beginning with the perceptions, actions and reflections of 
the child, developing out of the sensori-motor foundation of human thought, as 
the child observes regularities, builds mental concepts and makes links between 
them. 
Different developments of proof occur in the visuo-spatial development of 
geometry and the symbolic development of arithmetic and algebra. In geometry, 
perceptions are described and knowledge structures are developed that construct 
relationships, develop definitions of figures, deduce equivalent properties and 
build up a coherent structure of Euclidean geometry. In arithmetic, general 
properties of operations are observed, described, then later formulated as rules 
that should be obeyed in algebra, enabling a form of proof based on algebraic 
manipulation subject to the rules of arithmetic. 
The general population builds mainly on the physical, spatial and symbolic 
aspects of mathematics. Pure mathematicians in addition develop formally 
defined set-theoretic entities and formal proof. This leads to structure theorems 
that give the entities a rich combination of embodiment and symbolism, now 
supported by formal deduction. Applied mathematicians, develop contextual 
ways of using structures to model embodied situations as symbolic 
representations, solved by symbolic operations. 
In each case the strand of development begins from human perception and 
action, through experience of objects and properties, that are described, with 
meanings that are refined and defined, then built into more sophisticated 
thinkable concepts that have a rich knowledge structure. These are connected 
together through relationships constructed by appropriate forms of deduction 
and proof to lead to sophisticated crystalline concepts whose properties are 
constrained by the given context. In Euclidean geometry the crystalline concepts 
are platonic figures that represent the essentials underlying the physical 
examples, in arithmetic and algebra they are flexible procepts that enable fluent 
calculation and manipulation of symbols, and in formal mathematics they are the 
total entities arising through deduction from axioms and definitions, with their 
essential structure revealed by structure theorems. 
Proof involves a lifetime of cognitive development of the individual that is 
shared within societies and is further developed in sophistication by successive 
generations of mathematicians. Mathematical proof is designed to furnish 
theorems that can be used in a given context as both the culmination of a process 
of seeking certainty and explanation and also as a foundation for future 
developments in mathematical research. 
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