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A function which is a derivative of a known function can be integrated

in a closed form due to the Fundamental Theorem of Calculus (FTC).

Similarly, a series whose terms are differences of successive members of

a known sequence can be summed by an elementary method known as

telescoping.

To make our point explicit, let f ∈ C[0,∞) be such that

f(x) = −u′(x), and lim
x→∞

u(x) = 0.

Then, according to the FTC applied to the improper integral,
∞

∫

1

f(x) dx = u(1).

Similarly, consider a sequence f(n), n = 1, 2, 3... such that

f(n) = u(n) − u(n + 1) and lim
n→∞

u(n) = 0.

Then
∞

∑

n=1

f(n) = u(1). (1)
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Telescoping-I (Simple examples)

Consider the folowing algebraic relations

1

z(z + 1)
=

1

z
−

1

z + 1
,

hence
∞

∑

z=1

1

z(z + 1)
= 1.

Similarly,

2

z(z + 1)(z + 2)
=

1

z(z + 1)
−

1

(z + 1)(z + 2)
,

hence
∞

∑

z=1

1

z(z + 1)(z + 2)
=

(

1

2

) (

1

1 · 2

)

=
1

4
.

In general,
m

(z)m+1

=
1

(z)m
−

1

(z + 1)m
, (2)

where

(z)m = z(z + 1)(z + 2) · . . . · (z + m − 1).

For the function and its antidifference

f(n) =
1

n(n + 1) · · · (n + m)
, u(n) =

1/m

n(n + 1) · · · (n + m − 1)
.

the discrete FTC yields (since u(1) = 1/m!)
∞

∑

n=1

1

n(n + 1) · · · (n + m)
=

1

m · m!
.
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Telescoping-II: Stirling

Various formulas can be obtained by considering linear combinations

(possibly infinite) of identities (2) for different m:

∞
∑

m=1

bm

(z)m+1

=
∞

∑

m=1

bm

m (z)m
−

bm

m (z + 1)m
.

Denote

f(z) =
∞

∑

m=1

bm

z(z + 1) · · · (z + m)

and

u(z) =
∞

∑

m=1

bm/m

z(z + 1) · · · (z + m − 1)
.

Then

f(z) = u(z) − u(z + 1).

Put z = N + n and observe that
∞

∑

n=1

f(N + n) = u(N + 1),

which results in

∞
∑

n=1

∞
∑

m=1

bm

(N + n)m+1

=
∞

∑

m=1

bm

m (N + 1)m
. (3)

We’ll refer to this formula as to the Stirling Reduction Formula (SRF).
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Series rearrangements, which are clever elaborations of the telescoping

method, go back to the pioneering works by Stirling and his contempo-

raries in the 18th century.

Another trick turned to a technique by Stirling is his inverse factorial

formulas for zn, n ∈ Z. For example, repeatedly employing (2) for

m = 1, 2, . . .

1

z
=

1

z + 1
+

1

z(z + 1)

=
1

z + 1
+

1

(z + 1)(z + 2)
+

2

z(z + 1)(z + 2)

· · · · · ·

=
∞

∑

m=1

(m − 1)!

(z + 1) · · · (z + m)
,

He uses this formula and the SRF for series convergence acceleration.
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For example, Stirling calculates ζ(2) by writing

ζ(2) =
N

∑

n=1

1

n2
+

∞
∑

n=1

1

(N + n)2
,

summing the first N terms directly and using

1

z2
=

∞
∑

m=1

(m − 1)!

z(z + 1) · · · (z + m)
,

to transform the tail:

∞
∑

n=1

1

(N + n)2
=

∞
∑

n=1

∞
∑

m=1

(m − 1)!

(N + n)(N + n + 1) · · · (N + n + m)
. (4)

The double series can be reduced (by SRF) to the form

∞
∑

m=1

(m − 1)!

m (N + 1)(N + 2) · · · (N + m)
. (5)

From

lim
m→∞

(m − 1)!

(N + 1)(N + 2) · · · (N + m)
mN+1 = N !,

one can see that the terms of series (5) decrease as O(1/mN+2).

Taking N = 12 and K = 13 in the obtained approximate formula

ζ(2) ≈
N

∑

n=1

1

n2
+

K
∑

m=1

(m − 1)!

m (N + 1)(N + 2) · · · (N + m)
,

Stirling in 1730 found ζ(2) ≈ 1.644934065.
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Remarks. 1◦ Quoting J. Tweedle [10]:

The problem of determining the value of
∑

n−2 exactly was at

the time a celebrated problem and was first resolved by Euler in

the early 1730s. In a letter of 8 June 1736 Euler communicated

to Stirling the values of
∑

1/n2k (k = 1, 2, 3, 4), in particular,
∑

1/n2 = π2/6, and in his reply of 16 April 1738 Stirling said

of Euler’s result: “I acknowledge this to be quite ingenious and

entirely new and I do not see that it has anything in common

with the accepted methods, so that I readily believe that you

have drawn it from a new source.”

2◦ Note that formulas (2) allow one to arrive at a series which converges

at a geometrical rate (not found in Stirling’s book )

ζ(2) =

∞
∑

n=1

3(n − 1)!2

(2n)!

convergent geometrically with common ratio 1/4. For this, one has to

begin each next accelerating step (transition convergence exponent N

to N + 1) with delay, leaving the first term of the just transformed part

out.

Extending a delay to 2 and more terms leads to even faster convergent

series. For example

ζ(2) =
∞

∑

n=0

46n3 + 104n2 + 77n + 19

2(2n2 + 3n + 1)
·

n!(2n)!

(3n + 3)!

converges geometrically with common ratio 4/27.

3◦ It is possible to obtain geometrically convergent series for ζ(2) with

as small common ratio as desirable. Moreover, making the delay of

transition from N to N + 1 increasing with N , one obtains faster than

geometric convergence. However, it’s not clear whether a general term

of such a series can be written in a closed form.
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Next dimension: Green Formula

Let us return to the relation (4)=(5), or

∞
∑

n=1

1

(N + n)2
=

∞
∑

n=1

∞
∑

m=1

(m − 1)!

(N + n)m+1

=
∞

∑

m=1

(m − 1)!

m · (N + 1)m
.

It can be schematically rewritten as

∞
∑

n=1

F (n) =
∞

∑

n=1

∞
∑

m=1

h(n, m) =
∞

∑

n=1

G(m).

Identities of this type can be related to a two-dimensional version of

FTC, i.e. Green’s theorem for a conservative vector field.

Let ~f = (G, F )T = −∇u, or equivalently,

∂F (x, y)

∂x
=

∂G(x, y)

∂y
.

Then line integral along a simple closed curve vanishes:
∮

γ

G dx + F dy = 0.

Taking a rectangular contour γ, with sides x = 0, x = L, y = 0, y = L,

and letting L → ∞, one obtains
∫ ∞

0

F (0, y)dy =

∫ ∞

0

G(x, 0) dx,

provided that

lim
L→∞

∫ ∞

0

G(x, L) dx = 0, lim
L→∞

∫ ∞

0

F (L, y) dy = 0.
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We have a similar statement for series. Let there exist a pair of two-index

sequences F (n, k) and G(n, k) such that for all n, k ≥ 1

F (n + 1, k) − F (n, k) = G(n, k + 1) − G(n, k) (6)

and

lim
L→∞

∞
∑

n=0

G(n, L) = 0, lim
L→∞

∞
∑

k=0

F (L, k) = 0.

Then
∞

∑

k=0

F (0, k) =
∞

∑

n=0

G(n, 0). (7)

The series transformation technique based on the discrete Green formula

was first proposed some 115 years ago by A. Markov, Sr., a distinguished

analyst, who is the best known for his work in probability theory.

Markov explained the general approach plainly and clearly, but examples

he worked out were so amazingly complicated that his method didn’t

find followers for more than a century.
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Samples of Markov’s accelerated series

The formula

ζ(3) =
5

2

∞
∑

n=1

(−1)n−1

(

2n
n

)

n3
(8)

which is often attributed to Apéry (but also found in paper of 1953 by

M. M. Hjörtnæs) is a particular case of a formula found in Markov’s

memoir [5] of 1890

∞
∑

n=0

1

(a + n)3

=
1

4

∞
∑

n=0

(−1)nn!6

(2n + 1)!
·

5(n + 1)2 + 6(a − 1)(n + 1) + 2(a − 1)2

[a(a + 1) . . . (a + n)]4
.

(9)

The series (8), (9) converge at the geometric rate with common ratio

1/4. The following series, also known to Markov in 1890,

ζ(3) =
1

4

∞
∑

n=1

(−1)n−1 56n2 − 32n + 5

(2n − 1)2 n3

(n!)3

(3n)!
, (10)

converges at the geometric rate with ratio 1/27.

Ch. Hermite, the then-editor of Comptes Rendus, wrote Markov: “Par

quelle voie vous êtes parvenue à une telle transformation, et il me

faut vous laisser vôtre secret.” (“I can’t even remotely guess the way

you arrived at such a transformation, and it remains to leave your secret

with you.”)
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Having been deeply involved in studies on continued fractions through-

out the 1880s, Markov had correspondence with T. J. Stieltjes (1856-

1894) and closely watched his publications. In 1887 Stieltjes [8] pub-

lished a table of the values of the Riemann Zeta function ζ(k) with 32

decimals for integral values of k from 2 to 70.

Markov might have felt challenged by that achievement and by Stieltjes’

convergence acceleration technique. Possibly, it was this challenge and

rivalry that prompted Markov to develop his new acceleration method.

Afterwards he jealously beat Stieltjes’ record, taking 22 terms in his

series and obtaining the result with 33 decimals in

ζ(3) = 1.202056903159594285399738161511450.
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Markov’s method: general outline

Markov takes

F (n, k) = H(n, k)
(

A(n) + B(n)k + C(n)k2
)

, (11)

G(n, k) = H(n, k)
(

Ã(n) + B̃(n)k + C̃(n)k2
)

, (12)

where H(n, k) is a hypergeometric function, and A(n), B(n), C(n), ..

are yet unknown. Substitution into (6) leads to a system of first-order

linear recurrence relations for A(n), B(n), C(n), .. with polynomial in

n and k coefficients. The initial conditions are A(0) = 1, B(0) = 0,

C(0) = 0. If the system has a solution, then (7) gives

∞
∑

n=0

H(0, k) =
∞

∑

k=0

H(n, 0)Ã(0)

and it so happens in Markov’s examples that series on the right-hand

side converge much faster then series on the left-hand side.

Markov also considered accelerating transformations for q-series.

Some authors of textbooks and monographs (Fabry, Bromwich, Knopp,

Romanovski) mentioned Markov’s acceleration transformation and gave

relatively simple examples but it seems that no one ventured to add

anything comparable to Markov’s advanced examples.

Due to complexity of calculations the method remained largely ig-

nored and was eventually forgotten. It has not been in use for almost a

century.
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Gosper and computers

In 1976 William Gosper (knowing about Stirling’s work but not about

Markov’s) gave a new life to the topic.

By the end of 1980s a powerful computer-enhanced series transforma-

tion machinery has emerged due to Wilf and Zeilberger (WZ). The WZ

method proved to be very efficient in explaining known and discover-

ing new summations formulae and in applications to problems of series

acceleration and irrationality proofs.

The main feature of Gosper’s algorithm [1] is so called splitting function

sn, which splits each term an of a series in the proportions

an = ansn + an(1 − sn),

with further recombining the left fragment of each term with right frag-

ment of the preceding term attempting to make the combinations vanish

or become very small.
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Simple examples of Gosper’s transformation

1. Abel’s summation-by-parts formula

M
∑

n=0

an =

M
∑

n=0

qn∆pn = pM+1qM+1 − p0q0 −

M
∑

n=0

pn+1∆qn,

where ∆pn = pn+1 − pn, is effected by the splitting function

sn = −
pn

∆pn
,

so that

an(1 − sn) + an+1sn+1 = −pn+1∆qn.

2. Euler’s formula

M
∑

n=0

(1 − an+1)a1a2 · · · an = 1 − a1a2 · · · aM+1.

Here sn = (1 − an+1)
−1.

Application:

n
∑

k=1

(a)2k
(b)2k

(a + b + 2k − 1) =
1

b − a − 1

(

a2
−

(a)2n+1

(b)2n

)

,

where (a)k = a(a + 1) · · · (a + k − 1).

(This problem was submitted by Ramanujan to the Journal of the Indian

Mathematical Society, v.7 (1915), p.199).
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Hypergeometric integrating factors

The above trivial example should not create a misleading impression:

in fact, Gosper’s algorithm can handle much more general situations.

Let a(k) be a hypergeometric sequence, i.e, the value a(k + 1)/a(k) be

a rational function of k. Then Gosper’s algorithm solves a difference

equation

r(k + 1) =
a(k)

a(k + 1)
(r(k) + 1)

and, if successful, returns a sequence r(k) such that

a(k) = b(k − 1) − b(k), b(k) = r(k)a(k)

In this case the original sequence is said to be gosperable, a term coined

by Doron Zeilberger.

Zeilberger considered a more general problem:

Given H(n, k) hypergeometric in both indices, find

f(n) =
∑

k

H(n, k).

If H(n, k) is gosperable with respect to k, then f(n) can be found by

telescoping.

Zelberger’s algorithm offers a solution to the problem even if H(n, k) is

not gosperable w.r.t k,
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Zelberger’s algorithm

Given H(n, k) hypergeometric in both indices, the algorithm produces

sequences a0(n), a1(n),...aJ(n) and a two-index sequence R(n, k) (the

Wilf-Zeilberger Sertificate) such that

G(n, k) = R(n, k)H(n, k)

and the following expression is gosperable

a0(n)H(n, k) + · · · + aJ(n)H(n + J, k)

= G(n, k + 1) − G(n, k)
(13)

for some number J .

“The observed fact is that 99% of the time, J = 1.”

[7], p. 123.

Summation with respect to k of the above relation leads to a linear

recurrence relation for the unknown f(n)

a0(n)f(n) + · · · + aJ(n)f(n + J) = 0,

solvable explicitly by Petkovs̆ec algorithm.
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Conclusion

Interestingly, Markov’s approach (6), (11),(12) with

B(n) = C(n) = 0,

is compatible with WZ (13) for J = 1, if one puts

a0(n) = −
A(n)

Φ(n)
,

a1(n) =
A(n + 1)

Φ(n)
,

R(n, k) =
Ã(n) + B̃(n)k + C̃(n)k2

Φ(n)
,

for an appropriate function Φ(n).

Equation (6)

F (n + 1, k) − F (n, k) = G(n, k + 1) − G(n, k)

defines the so called Wilf-Zeilberger (WZ) pair and is a cornerstone to

the whole approach.

The aim of our paper [2] was to resurface the memoir by Markov and

to review his old and forgotten results from the point of a modern algo-

rithmic approach.

This resulted in amendments to Zelberger’s algorithm proposed by M. Mo-

hammed and D. Zeilberger and including a certain freedom contained

in Markov’s approach 11,12.

New accelerated series (or rather acceleration algorithms), in partic-

ular for ζ(5), were produced with the help of computer algebra [6].
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[7] M. Petkovšek, H. Wilf, and D. Zeilberger, A = B, A. K. Peters

Ltd., Natick MA, 1997.

[8] T. J. Stieltjes, Tables des valeurs des sommes Sk =
∑∞

n=1
n−k, Acta

Math. 10 (1887), 299–302.

[9] J. Stirling, Methodus differentialis, London, 1730.

[10] I. Tweddle, James Stirling’s Methodus Differentialis: An Annot-

ated Translat-ion of Stirling’s Text, Springer, N.-Y., 2003.

17


