Assignment 4 Solutions

Problem1: Use Method of Undetermined Coefficients to find a particular solution of the non-homogeneous equation. Find general solution of the non-homogeneous equation.

$$(a.)y'' + 2y' + y = 2e^t$$

First solve the homogeneous equation:

$$y'' + 2y' + y = 0$$

$$\lambda^2 + 2\lambda + 1 = 0$$

$$(\lambda + 1)(\lambda + 1) = 0$$

$$\lambda = -1$$
 (repeated root)

So therefore, the general solution of the homogeneous part is:

$$y(t) = c_1 e^{-t} + c_2 t e^{-t}$$

Now we must solve for the non-homogeneous part:

$$y(t) = Ae^t, \ y'(t) = Ae^t, \ y''(t) = Ae^t$$

Plug the above into the non-homogeneous equation and solve.

$$y'' + 2y' + y = 2e^t$$

$$(Ae^t) + 2(Ae^t) + (Ae^t) = 2e^t$$

$$4Ae^t = 2e^t$$

$$4A = 2$$

$$A = \frac{1}{2}$$

So therefore the final solution is:

$$y(t) = c_1 e^{-t} + c_2 t e^{-t} + \frac{1}{2}$$

$$(b.)y'' + 2y' + y = 2e^{-t}$$

First solve the homogeneous equation:

$$y'' + 2y' + y = 0$$

$$\lambda^2 + 2\lambda + 1 = 0$$

$$(\lambda + 1)(\lambda + 1) = 0$$

$$\lambda = -1$$
 (repeated root)

So therefore, the general solution of the homogeneous part is:

$$y(t) = c_1 e^{-t} + c_2 t e^{-t}$$

Now we must solve for the non-homogeneous part:

$$y(t) = At^2e^{-t}, \ y'(t) = A(2te^{-t} - t^2e^{-t}), \ y''(t) = A(2e^{-t} - 4te^{-t} + t^2e^{-t})$$

Plug the above into the non-homogeneous equation and solve.

$$y'' + 2y' + y = 2e^t$$

$$A[2e^{-t} - 4te^{-t} + te^{-t} + 4te^{-t} - 2t^2e^{-t} + t^2e^{-t}] = 2e^t$$

$$A = 1$$

So therefore the final solution is:

$$y(t) = c_1 e^{-t} + c_2 t e^{-t} + t^2 e^{-t}$$

$$(c.)y'' + 2y' + 5y = 3\sin(2t)$$

First solve the homogeneous equation:

$$y'' + 2y' + 5y = 0$$

$$\lambda^2 + 2\lambda + 5 = 0$$

$$\lambda = -1 \pm 2i$$

So therefore, the general solution of the homogeneous part is:

$$y(t) = c_1 e^{-t} \cos 2t + c_2 e^{-t} \sin 2t$$

Now we must solve for the non-homogeneous part:

$$y(t) = A\sin 2t + B\cos 2t, \ y'(t) = 2A\cos 2t - 2B\sin 2t, \ y''(t) = -4A\sin 2t - 4B\cos 2t$$

Plug the above into the non-homogeneous equation and solve.

$$y'' + 2y' + 5y = 2e^t$$

$$(-4A\sin 2t - 4B\cos 2t) + 2(2A\cos 2t - 2B\sin 2t) + 5(A\sin 2t + B\cos 2t) = 3\sin 2t$$

$$(A - 4B)\sin 2t + (B + 4A)\cos 2t = 3\sin 2t$$

$$A - 4B = 3$$
, $B + 4A = 0$

$$A = \frac{3}{17} andB = \frac{-12}{17}$$

So therefore the final solution is:

$$y(t) = c_1 e^{-t} \cos 2t + c_2 e^{-t} \sin 2t + \frac{3}{17} \sin 2t - \frac{12}{17} \cos 2t$$

(d.)
$$y'' - 2y' - 3y = e^{2t}$$

First solve the homogeneous equation:

$$y'' - 2y' - 3y = 0$$

$$\lambda^2 - 2\lambda - 3 = 0$$

$$(\lambda + 1)(\lambda - 3) = 0$$

$$\lambda_1 = 3, \quad \lambda_2 = -1$$

So therefore, the general solution of the homogeneous part is:

$$y(t) = c_1 e^{3t} + c_2 e^{-t}$$

Now we must solve for the non-homogeneous part:

$$y(t) = Ae^{2t}, \quad y'(t) = 2Ae^{2t}, \quad y''(t) = 4Ae^{2t}$$

Plug the above into the non-homogeneous equation and solve.

$$y'' - 2y' - 3y = e^{2t}$$

$$4Ae^{2t} - 4Ae^{2t} - 3Ae^{2t} = e^{2t}$$

$$A = \frac{-1}{3}$$

So therefore the final solution is:

$$y(t) = c_1 e^{3t} + c_2 e^{-t} - \frac{1}{3} e^{2t}$$

Problem 2: Solve the Initial Value Problem (a.)y'' - 2y' + y = 4, y(0) = 1, y'(0) = 1 First solve the homogeneous equation:

$$y'' - 2y' + y = 0$$

$$\lambda^2 - 2\lambda + 1 = 0$$

$$(\lambda - 1)(\lambda - 1) = 0$$

$$\lambda_1 = \lambda_2 = 1$$

So therefore, the general solution of the homogeneous part is:

$$y(t) = c_1 e^t + c_2 t e^t$$

Now we must solve for the non-homogeneous part:

$$y(t) = A, y'(t) = 0, y''(t) = 0$$

Plug the above into the non-homogeneous equation and solve.

$$y'' - 2y' + y = 4$$

$$(0) - 2(0) + (A) = 4$$

$$A = 4$$

So therefore the general solution is:

$$y(t) = c_1 e^t + c_2 t e^t + 4$$

Now we must plug in the initial values to determine c_1 and c_2 :

$$y(t) = c_1 e^t + c_2 t e^t + 4$$

$$y'(t) = c_1 e^t + c_2 e^t + c_2 t e^t$$

$$y(0) = c_1 + 4 = 1$$

$$\implies c_1 = -3$$

$$y'(0) = c_1 + c_2 = 1$$

$$\implies c_2 = 4$$

So therefore the final solution to the initial value problem is:

$$y(t) = -3e^t + 4te^t + 4$$

(b.)
$$y'' - 2y' + y = te^t + 4$$
, $y(0) = 1$, $y'(0) = 1$

First solve the homogeneous equation:

$$y'' - 2y' + y = 0$$

$$\lambda^2 - 2\lambda + 1 = 0$$

$$(\lambda - 1)(\lambda - 1) = 0$$

$$\lambda_1 = \lambda_2 = 1$$

So therefore, the general solution of the homogeneous part is:

$$y(t) = c_1 e^t + c_2 t e^t$$

Now we must solve for the non-homogeneous part, which we can solve separately:

We can first solve y'' - 2y' + y = 4, which was already done in the previous question. So therefore we can go ahead and solve

$$y'' - 2y' + y = te^t$$

$$y(t) = At^3e^t, \ y'(t) = A(3t^2e^t + t^3e^t), \ y''(t) = A(6te^t + 6t^2e^t + t^3e^t)$$

Plug the above into the non-homogeneous equation and solve.

$$y'' - 2y' + y = te^t$$

$$A[6t + 6t^2 + t^3 - 6t^2 - 2t^3 + t^3)e^t = te^t$$

$$A = \frac{1}{6}$$

So therefore the general solution is:

$$y(t) = c_1 e^t + c_2 t e^t + \frac{1}{6} t^3 e^t + 4$$

So therefore the final solution to the initial value problem is:

$$y(t) = -3e^t + 4te^t + \frac{1}{6}t^3e^t 4$$

Problem 3: Use Method of Variation of Parameters to find a solution of the non-homogeneous equation. Find general solution of the non-homogeneous equation

(a.)
$$y'' + 4y = 3\csc 2t$$
, $0 < t < \frac{\pi}{2}$

First solve the homogeneous equation:

$$y'' + 4y = 0$$

$$\lambda^2 + 4 = 0$$

$$\lambda = \pm 2i$$

So therefore, the general solution of the homogeneous part is:

$$y(t) = c_1 \cos 2t + c_2 \sin 2t$$

Now first solve for Wronskian of the equation and then solve for c_1 and c_2 :

$$W[\cos 2t, \sin 2t] = \cos 2t(2\cos 2t) + 2\sin 2t(\sin 2t)$$

$$= 2\cos^2 2t + 2\sin^2 2t = 2$$

$$c_1 = \int \csc 2t \cos 2t dt = \frac{\ln|\sin 2t|}{2}$$

$$c_2 = \int \csc 2t \sin 2t dt = t$$

$$y(t) = \frac{3\sin 2t}{4} \ln|\sin 2t| - \frac{3t\cos 2t}{2}$$

So therefore the final solution is:

$$y(t) = c_1 \cos 2t + c_2 \sin 2t + \frac{3\sin 2t}{4} \ln|\sin 2t| - \frac{3t\cos 2t}{2}$$

(b.)
$$y'' + 4y = 3\sec^2(2t)$$
, $\frac{-\pi}{4} < t < \frac{\pi}{4}$

First solve the homogeneous equation:

$$y'' + 4y = 0$$

$$\lambda^2 + 4 = 0$$

$$\lambda = \pm 2i$$

So therefore, the general solution of the homogeneous part is:

$$y(t) = c_1 \cos 2t + c_2 \sin 2t$$

Now first solve for Wronskian of the equation and then solve for c_1 and c_2 :

$$W[\cos 2t, \sin 2t] = 2\cos 2t(\cos 2t) + 2\sin 2t(\sin 2t)$$

$$= 2\cos^2 2t + 2\sin^2 2t = 2$$

$$c_2 = \int \sec^2(2t)\cos 2t dt = \frac{\ln|\tan 2t + \sec 2t|}{2}$$

$$c_1 = \int \sec^2(2t)\sin 2t dt = -\frac{1}{2\cos 2t}$$

So therefore the final solution is:

$$y(t) = c_1 \cos 2t + c_2 \sin 2t + \frac{3\sin 2t}{4} \ln|\tan 2t + \sec 2t| - \frac{3}{4}$$
 (c.) $y'' + 4y' + 4y = t^{-2}e^{-2t}$

First solve the homogeneous equation:

$$y'' + 4y' + 4y = 0$$
$$\lambda^{2} + 4\lambda + 4 = 0$$
$$(\lambda + 2)(\lambda + 2)$$
$$\lambda_{1} = \lambda_{2} = -2$$

So therefore, the general solution of the homogeneous part is:

$$y(t) = c_1 e^{-2t} + c_2 t e^{-2t}$$

Now first solve for Wronskian of the equation and then solve for c_1 and c_2 :

$$W[e^{-2t}, te^{-2t}] = e^{-2t}(-2te^{-2t} + e^{-2t}) - (-2e^{-2t})(te^{-2t})$$

$$= (e^{-2t})^2$$

$$= e^{-4t}$$

$$c_1 = \int \left(\frac{t^{-2}e^{-2t}}{e^{-4t}}\right) e^{-2t} dt$$

$$= \int t^{-2}dt = \frac{-1}{t}$$

$$c_2 = \int \left(\frac{t^{-2}e^{-2t}}{e^{-4t}}\right) te^{-2t}dt$$

$$= \int \frac{1}{t}dt = \ln|t|$$

$$y(t) = c_1e^{-2t} + c_2te^{-2t} - e^{-2t}\ln|t| - te^{-2t}\frac{1}{t}$$

So therefore the final solution is:

$$y(t)=c_1e^{-2t}+c_2te^{-2t}-e^{-2t}\ln|t|$$
 (d.) $t^2y''-2y=3t^2-1, \qquad t>0$ Below we have Euler's Equation with $\alpha=0$ and $\beta=-2$

$$t^{2}y'' - 2y = 0$$

$$x = \ln |t|$$

$$y''_{xx} - y'_{x} - 2y = 0$$

$$\lambda^{2} - \lambda - 2 = 0$$

$$\lambda_{1} = 2, \quad \lambda_{2} = -1$$

$$y(x) = c_{1}e^{2x} + c_{2}e^{-x}$$

$$y(t) = c_{1}t^{2} + c_{2}t^{-1}$$

Now first solve for the Wronskian of the equation and then solve for c_1 and c_2 :

$$W[e^{2x}, e^{-x}] = -3e^x$$

$$\int \left(\frac{3e^{2x} - 1}{-3e^x}\right) e^{-x} dx$$

$$= -\frac{1}{3} \int 3e^{3x} - e^x dx$$

$$= -\frac{1}{3} [e^{3x} - e^x]$$

$$\int \left(\frac{3e^{2x} - 1}{-3e^x}\right) e^{-x} dx$$

$$= \int -1 + \frac{e^{-2x}}{3} dx = -x - \frac{e^{-2x}}{6}$$

$$y = e^{2x} \left(x + \frac{e^{-2x}}{6}\right) + e^{-x} \left(\frac{e^x - e^{3x}}{3}\right)$$

$$= e^{2x} x + \frac{1}{6} + \frac{1}{3} - \frac{e^{2x}}{3}$$

$$y(x) = c_1 e^{2x} + c_2 e^{-x} + x e^{2x} + \frac{1}{2}$$

So therefore final solution is:

$$y(t) = c_1 t^2 + c_2 t^{-1} + \ln|t|(t^2) + \frac{1}{2}$$

Problem 4: An undamped spring-mass system with mass m=2 and a spring constant k=8 is suddenly set in motion at time t=0 by an external force $f=5\cos 3t$. Determine the position of the mass as a function of time and draw the graph.

$$mu'' + ku = F(t)$$

$$2u'' + 8u = 5\cos 3t$$

$$u(0) = 0, \quad u'(0) = 0$$

$$w_0 = \sqrt{\frac{k}{m}} = 2$$

$$u(t) = c_1 \cos 2t + c_2 \sin 2t - \frac{\cos 3t}{2}$$

$$c_1 = \frac{1}{2}, \qquad c_2 = 0$$

So therefore the final solution is:

$$u(t) = \frac{1}{2}(\cos 2t - \cos 3t) = \sin\left(\frac{t}{2}\right)\sin\left(\frac{5t}{2}\right)$$