Quiz 3 on Wed Feb 13: Answers

NAME and student number

[2] 1. Give definition of rank of a matrix.

Answer: Either of the following can serve as a definition of rank:
-Rank of a matrix is the number of leading 1 s in a REF of the matrix.
-Rank of a matrix is the dimension of its column space.
-Rank of a matrix is the dimension of its row space.
[4] 2. a) Find basis in column space and null space of matrix A.
b) Give an example of vector B for which the system $A X=B$ has a solution, and find all the solutions corresponding to B.

$$
A=\left[\begin{array}{ccccc}
1 & -1 & 5 & -2 & 2 \\
2 & -2 & -2 & 5 & 1 \\
0 & 0 & -12 & 9 & -3 \\
-1 & 1 & 7 & -7 & 1
\end{array}\right]
$$

Answer: Use elementary row operations to rewrite the matrix in REF

$$
\left[\begin{array}{ccccc}
1 & -1 & 5 & -2 & 2 \\
0 & 0 & 1 & -0.75 & 0.25 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right] .
$$

The leading 1 s are in column 1 and 3 , thus the basis in the column space is $\vec{u}=A_{1}=(1,2,0,-1)^{T}$, and $\vec{v}=A_{3}=(5,-2,-12,7)^{T}$.

The solution of corresponding homogeneous $A X=0$ system is

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right]=q\left[\begin{array}{l}
1 \\
1 \\
0 \\
0 \\
0
\end{array}\right]+t\left[\begin{array}{c}
-0.75 \\
0 \\
-0.25 \\
0 \\
1
\end{array}\right]+s\left[\begin{array}{c}
-1.75 \\
0 \\
0.75 \\
1 \\
0
\end{array}\right]
$$

Let $X=(2,0,0,0,0)^{T}$ then $B=A X=2 A_{1}=(2,4,0,-2)^{T}$. The parametric solution corresponding to this B is the sum of the X we have chosen plus the null space of A :

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right]=\left[\begin{array}{l}
2 \\
0 \\
0 \\
0 \\
0
\end{array}\right]+q\left[\begin{array}{l}
1 \\
1 \\
0 \\
0 \\
0
\end{array}\right]+t\left[\begin{array}{c}
-0.75 \\
0 \\
-0.25 \\
0 \\
1
\end{array}\right]+s\left[\begin{array}{c}
-1.75 \\
0 \\
0.75 \\
1 \\
0
\end{array}\right]
$$

[4] 3. Prove the following statement and give an example of how this statement can be used.
If \vec{v}_{1}, \vec{v}_{2} is an orthonormal basis then any $\vec{w} \in \operatorname{span}\left(\vec{v}_{1}, \vec{v}_{2}\right)$ has coordinates $x_{1}=\vec{w} \cdot \vec{v}_{1}, x_{2}=\vec{w} \cdot \vec{v}_{2}$ relative to this basis.

Answer:
Way 1: If \vec{v}_{1}, \vec{v}_{2} is an orthonormal basis then

$$
\overrightarrow{v_{1}} \cdot \overrightarrow{v_{2}}=0, \quad \overrightarrow{v_{1}} \cdot \overrightarrow{v_{1}}=\overrightarrow{v_{2}} \cdot \overrightarrow{v_{2}}=1
$$

Consider matrix A whose columns are vectors \vec{v}_{1} and \vec{v}_{2}. Observe that since the basis is orthonormal, we have $A^{T} A=I$, where I is 2×2 identity matrix.

In order to find coordinates of \vec{w} in basis \vec{v}_{1}, \vec{v}_{2}, that is to find x_{1} and x_{2} such that

$$
\vec{w}=x_{1} \vec{v}_{1}+x_{2} \vec{v}_{2}
$$

one needs to solve the system

$$
A X=\vec{w}
$$

To solve the system $A X=\vec{w}$ we multiply both sides by A^{T} from the left and use $A^{T} A=I$. Then we have $X=A^{T} \vec{w}$. Recall that rows of matrix A^{T} are vectors \vec{v}_{1}, \vec{v}_{2}, thus $x_{1}=\vec{w} \cdot \vec{v}_{1}$, $x_{2}=\vec{w} \cdot \vec{v}_{2}$.

Way 2: Draw a picture of two orthogonal vectors and an arbitrary vector \vec{w} in the plane. Observe that

$$
\vec{w}=\operatorname{proj}_{v_{1}}(\vec{w})+\operatorname{proj}_{v_{2}}(\vec{w})
$$

Recall that orthogonal projection $\operatorname{proj}_{g}(\vec{f})$ of a vector \vec{f} onto vector \vec{g} is given by formula

$$
\operatorname{proj}_{g}(\vec{f})=\frac{\vec{f} \cdot \vec{g}}{\vec{g} \cdot \vec{g}} \vec{g}
$$

Since the basis is orthonormal, $\overrightarrow{v_{1}} \cdot \overrightarrow{v_{1}}=\vec{v}_{2} \cdot \vec{v}_{2}=1$ and we have $\operatorname{proj}_{v_{1}}(\vec{w})=\left(\vec{w} \cdot \vec{v}_{1}\right) \vec{v}_{1}$ and $\operatorname{proj}_{v_{2}}(\vec{w})=\left(\vec{w} \cdot \vec{v}_{2}\right) \vec{v}_{2}$. This gives

$$
\vec{w}=\left(\vec{w} \cdot \vec{v}_{1}\right) \vec{v}_{1}+\left(\vec{w} \cdot \vec{v}_{2}\right) \vec{v}_{2},
$$

which means that the coordinates of \vec{w} relative to basis \vec{v}_{1}, \vec{v}_{2} are $x_{1}=\vec{w} \cdot \vec{v}_{1}, x_{2}=\vec{w} \cdot \vec{v}_{2}$.

