Exercise Set 3 for Quiz on Fri Feb 1. Answers

3. Find coordinates of vector \vec{v} in given basis. Is the basis orthogonal? Is the basis orthonormal? a) $\vec{v}=(1,2)^{T}$ w.r.t basis $\vec{f}=(2,2)^{T}, \vec{g}=(3,1)^{T}$.

Solution

The coordinates are $(5 / 4,-1 / 2)$.
Basis $\vec{f}=(2,2)^{T}, \vec{g}=(3,1)^{T}$ is neither orthogonal nor orthonormal.
b) $\vec{v}=(3,5,10)^{T}$ w.r.t basis $\vec{f}=(1,2,0)^{T}, \vec{g}=(1,0,2)^{T}, \vec{h}=(0,1,2)^{T}$.

Solution
The coordinates are ($1,2,3$).
The basis is neither orthogonal nor orthonormal.
c) $\vec{v}=(13,-20,15)^{T}$ w.r.t basis $\vec{f}=(1,-2,3)^{T}, \vec{g}=(-1,1,1)^{T}$.

Solution

The coordinates are $(7,-6)$.
The basis is orthogonal but not orthonormal.
d) $\vec{v}=(14,1,-8,5)^{T}$ w.r.t basis $\vec{f}=(2,-1,0,3)^{T}, \vec{g}=(2,1,-2,-1)^{T}$.

Solution
The coordinates are $(3,4)$.
The basis is orthogonal but not orthonormal.
4. Perform (1) and (2) for each a) and b).
(1) Find matrix of the coordinate transformation for a change of basis from $\left(\vec{e}_{1}, \vec{e}_{2}, \vec{e}_{3}\right)$ to basis $\left(\overrightarrow{f_{1}}, \overrightarrow{f_{2}}, \overrightarrow{f_{3}}\right)$;
(2) Let $\vec{v}=\vec{e}_{1}-\vec{e}_{2}+\vec{e}_{3}$. Find coordinates of this vector w.r.t basis $\left(\vec{f}_{1}, \overrightarrow{f_{2}}, \overrightarrow{f_{3}}\right)$;
if
a) $\vec{f}_{1}=3 \vec{e}_{1}-5 \vec{e}_{2}+\vec{e}_{3}, \overrightarrow{f_{2}}=5 \vec{e}_{1}-10 \vec{e}_{2}+5 \vec{e}_{3}, \overrightarrow{f_{3}}=2 \vec{e}_{1}-\vec{e}_{3}$.
b) $\vec{e}_{1}=-2 \overrightarrow{f_{1}}+\overrightarrow{f_{2}}+3 \overrightarrow{f_{3}}, \vec{e}_{2}=-3 \overrightarrow{f_{1}}+\overrightarrow{f_{2}}+2 \overrightarrow{f_{3}}, \vec{e}_{3}=-4 \overrightarrow{f_{1}}+2 \overrightarrow{f_{2}}+\overrightarrow{f_{3}}$.

Solution
a) (1)From the coefficients in formulas $\vec{f}_{1}=3 \vec{e}_{1}-5 \vec{e}_{2}+\vec{e}_{3}, \overrightarrow{f_{2}}=5 \vec{e}_{1}-10 \vec{e}_{2}+5 \vec{e}_{3}, \overrightarrow{f_{3}}=2 \vec{e}_{1}-\vec{e}_{3}$ we directly construct matrix of the coordinate transformation for a change of basis from $\left(\vec{e}_{1}, \vec{e}_{2}\right.$, $\left.\overrightarrow{e_{3}}\right)$ to basis $\left(\overrightarrow{f_{1}}, \overrightarrow{f_{2}}, \overrightarrow{f_{3}}\right)$

$$
M_{e \rightarrow f}=\left[\begin{array}{ccc}
3 & 5 & 2 \\
-5 & -10 & 0 \\
1 & 5 & -1
\end{array}\right]
$$

(2)From $\vec{v}=\vec{e}_{1}-\vec{e}_{2}+\vec{e}_{3}$ we find coordinates of \vec{v} w.r.t basis $\left(\vec{e}_{1}, \vec{e}_{2}, \vec{e}_{3}\right): X=(1,-1,1)^{T}$.

Denote by Y coordinates of \vec{v} w.r.t basis $\left(\vec{f}_{1}, \overrightarrow{f_{2}}, \overrightarrow{f_{3}}\right)$. Then

$$
X=M_{e \rightarrow f} Y
$$

Thus $Y=\left(M_{e \rightarrow f}\right)^{-1} X=(-3 / 5 ; 2 / 5 ; 2 / 5)^{T}$ or $\vec{v}=-0.6 \vec{f}_{1}+0.4 \vec{f}_{2}+0.4 \vec{f}_{3}$. (I left for you to do the calculation.)
b) (1) From given formulas $\vec{e}_{1}=-2 \vec{f}_{1}+\vec{f}_{2}+3 \vec{f}_{3}, \vec{e}_{2}=-3 \vec{f}_{1}+\vec{f}_{2}+2 \vec{f}_{3}, \vec{e}_{3}=-4 \vec{f}_{1}+2 \vec{f}_{2}+\vec{f}_{3}$, we find the matrix of the change of coordinates from basis $\left(\overrightarrow{f_{1}}, \overrightarrow{f_{2}}, \overrightarrow{f_{3}}\right)$ to basis $\left(\vec{e}_{1}, \overrightarrow{e_{2}}, \overrightarrow{e_{3}}\right)$

$$
M_{f \rightarrow e}=\left[\begin{array}{ccc}
-2 & -3 & -4 \\
1 & 1 & 2 \\
3 & 2 & 1
\end{array}\right]
$$

In order to find the required matrix we need to invert this one:

$$
M_{e \rightarrow f}=\left(M_{f \rightarrow e}\right)^{-1}=\frac{1}{5}\left[\begin{array}{ccc}
3 & 5 & 2 \\
-5 & -10 & 0 \\
1 & 5 & -1
\end{array}\right]
$$

(2) From $\vec{v}=\vec{e}_{1}-\vec{e}_{2}+\vec{e}_{3}$ we find coordinates of \vec{v} w.r.t basis $\left(\vec{e}_{1}, \vec{e}_{2}, \vec{e}_{3}\right): X=(1,-1,1)^{T}$. Denote by Y coordinates of \vec{v} w.r.t basis $\left(\vec{f}_{1}, \overrightarrow{f_{2}}, \overrightarrow{f_{3}}\right)$. Then

$$
X=M_{e \rightarrow f} Y
$$

or equivalently,

$$
M_{f \rightarrow e} X=Y
$$

Thus $Y=(-3,2,2)^{T}$ or $\vec{v}=-3 \overrightarrow{f_{1}}+2 \overrightarrow{f_{2}}+2 \overrightarrow{f_{3}}$.

