Quiz 2 on Fri Feb 1: Answers

NAME and student number

1. Give a definition of span of n vectors.

Answer: Span of n vectors is the set of all linear combinations of the vectors.
2. Give an example of four linearly dependent vectors and explain, using the definition, why they are linearly dependent.

Answer: $\vec{v}=(1,0,0,0)^{T}, \vec{u}=(2,0,0,0)^{T}, \vec{w}=(0,1,2,3)^{T}, \vec{f}=(1,1,1,1)^{T}$. Vectors are linearly dependent if at least one of them can be written as linear combination of the rest.

Here $\vec{v}=0.5 \vec{u}+0 \vec{w}+0 \vec{f}$, which makes all four linearly dependent.
3. Is the following triple of vectors linearly dependent or linearly independent? Justify.
$\vec{u}=(1,2,0)^{T}, \vec{v}=(1,0,2)^{T}, \vec{w}=(0,1,2)^{T}$.
Answer: Set up matrix $A=\left[\begin{array}{lll}1 & 1 & 0 \\ 2 & 0 & 1 \\ 0 & 2 & 2\end{array}\right]$ whose columns are the given vectors. Solve the system $A X=0$. Since the system has only trivial solution $X=(0,0,0)^{T}$ we conclude that the vectors are linearly independent.
4. Find dimension and basis of the linear vector space defined as

$$
\text { eigenspace of } A \text {, where } A=\left[\begin{array}{ccc}
10 & 20 & 30 \\
0 & 10 & 0 \\
0 & 0 & 10
\end{array}\right]
$$

Answer: The only zero of the characteristic polynomial $\operatorname{det}(A-\lambda I)$ is $\lambda=10$. Consider matrix $M=A-10 I=\left[\begin{array}{ccc}0 & 20 & 30 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$ and solve $M X=0$ to find the parametric solution: $x_{1}=t$, $x_{2}=-1.5 s, x_{3}=s$, which describes the eigenspace of A. Rewrite it as

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=t\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]+s\left[\begin{array}{c}
0 \\
-1.5 \\
1
\end{array}\right]
$$

Thus, the dimension is 2 and vectors $(1,0,0)^{T}$ and $(0,-3,2)^{T}$ can be taken as a basis.
5. Find coordinates of vector $\vec{v}=(13,-20,15)^{T}$ relative to basis $\vec{f}=(1,-2,3)^{T}, \vec{g}=(-1,1,1)^{T}$.

Answer: We need to find x_{1} and x_{2} such that $\vec{v}=x_{1} \vec{f}+x_{2} \vec{g}$. This leads to the system of linear equations $\left[\begin{array}{cc|c}1 & -1 & 13 \\ -2 & 1 & -20 \\ 3 & 1 & 15\end{array}\right]$, which can be solved by elementary row operations leading to REF.

The answer is $x_{1}=7, x_{2}=-6$.

