Answers for Quiz 1 on Fri Jan 18.

NAME and student number

1. Give a definition of null space of a matrix A.

Answer.
Null space of a matrix A is a collection of all vectors X such that $A X=0$.
2. Give an example of linear subspace in \mathbf{R}^{3}.

Answer.
Example 1: A plane $x+y-z=0$.
Example 2: A line through the origin in direction $(1,2,4)$.
Example 3: The origin.
3. Explain using the definition whether the following is a linear subspace of \mathbf{R}^{3} :
the plane $x-y-2=0$.
Answer.
No. This plane does not contain the origin $x=y=z=0$.
4. Outline the proof of Theorem 3:

Given any nonzero vector $\vec{d}=\left(d_{1}, d_{2}, d_{3}\right)^{T}$, a collection of all vectors proportional to \vec{d} (that it, all vectors in the form $t \vec{d}$, where t is any real number) forms a linear vector space.

Answer.
Proof:
Consider the collection of all vectors \vec{v} in the form $t \vec{d}$, where t is any real number and \vec{d} is a given non-zero vector:

$$
\{\vec{v}=t \vec{d} \mid t \in \mathbf{R}\}
$$

Different values of t correspond to different elements of the collection.

1. Let $t=0$; this gives the zero vector. Thus the zero vector is in the collection.
2. Let $\vec{v}_{1}=t_{1} \vec{d}$ and $\vec{v}_{2}=t_{2} \vec{d}$ be two vectors from the collection (both are proportional to \vec{d}).

Then their sum

$$
\vec{v}_{1}+\vec{v}_{2}=t_{1} \vec{d}+t_{2} \vec{d}=\left(t_{1}+t_{2}\right) \vec{d}=s \vec{d}
$$

is also proportional to \vec{d} and thus is in the collection.
3. A multiple $k \vec{v}$ is again in the collection:

$$
k \vec{v}=k(t \vec{d})=s \vec{d} .
$$

Since all three properties of a linear vector space hold, the collection is a linear vector space.

