MATH 2051 MIDTERM EXAM on February 22,2008 Answers

Instructor: Margo Kondratieva.
Student:

1. (9 points)
(a) Complete the definition:

A linear (vector) space is a collection of vectors with the following properties:
(1) it contains the zero vector $\overrightarrow{0}$ - such that for any vector \vec{v} from the collection $\overrightarrow{0}+\vec{v}=$ $\vec{v}+\overrightarrow{0}=\vec{v}$;
(2) the sum of any two vectors from the collection is again in the collection;
(3) a multiple of any vector from the collection is again in the collection.
(b) Use you definition in part (a) to prove that:

The collection of all vectors $\vec{v}=(x, y, z)^{T}$ which are orthogonal to vector

$$
\vec{n}=(22,2,2008)^{T}
$$

form a linear (vector) space.
Solution: Note that the collection include all $\vec{v}=(x, y, z)^{T}$ such that

$$
22 x+2 y+2008 z=0
$$

Now we will check all three properties.
(1) $\overrightarrow{0}=(0,0,0)^{t}$ belongs to the collection because substitution of $x=y=z=0$ into the equation above gives a true statement $0=0$.
(2) Let $\vec{v}_{1}=\left(x_{1}, y_{1}, z_{1}\right)^{T}$ such that $22 x_{1}+2 y_{1}+2008 z_{1}=0$ and $\vec{v}_{2}=\left(x_{2}, y_{2}, z_{2}\right)^{T}$ such that $22 x_{2}+2 y_{2}+2008 z_{2}=0$, that is both vectors are from the collection. By adding these two equations we obtain $22\left(x_{1}+x_{2}\right)+8\left(y_{1}+y_{2}\right)+2008\left(z_{1}+z_{2}\right)=0$.
Thus the sum of the vectors

$$
\vec{v}_{1}+\vec{v}_{2}=\left(x_{1}+x_{2}, y_{1}+y_{2}, z_{1}+z_{2}\right)^{T}
$$

also belongs to the collection.
(3) Let $\vec{v}_{1}=\left(x_{1}, y_{1}, z_{1}\right)^{T}$ such that $22 x_{1}+2 y_{1}+2008 z_{1}=0$. Multiplying this equation by any number $k \neq 0$ we get $22 k x_{1}+2 k y_{1}+2008 k z_{1}=0$, thus vector $k \vec{v}_{1}=\left(k x_{1}, k y_{1}, k z_{1}\right)^{T}$ also belongs to the collection.
All three properties are verified, thus this collection of vectors is a vector space.
2. (9 point)
(a) Give a definition of n linearly independent vectors.

Answer: None of the n vectors can be expressed as a linear combination of the rest $n-1$ vectors.
(b) Let the columns of a rectangular $m \times n$ matrix A be linearly independent vectors, and $m \neq n$. Which of the following are TRUE?
(1) $m>n$
(2) $m<n$
(3) linear independence of columns is possible only for $m=n$.
(4) system $A X=B$ has a unique solution for any $m \times 1$ matrix B.
(5) system $A X=B$ has a parametric solution for some $m \times 1$ matrices B.
(6) system $A X=B$ has a unique solution for some $m \times 1$ matrices B. Matrix B must be in the column space of A.
(c) Give an example of a matrix with four linearly independent rows. What is the rank of your matrix?

Answer: Identity 4×4 matrix is an example.
Rank is 4.
3. (8 point)

Let $\vec{f}_{1}=\vec{e}_{1}+2 \vec{e}_{2}, \vec{f}_{2}=\overrightarrow{3} e_{1}+4 \vec{e}_{2}$, and $\vec{v}=5 \vec{e}_{1}+6 \vec{e}_{2}$,
(a) Find the matrix of coordinate transformation for the change from basis $\left(\vec{e}_{1}, \vec{e}_{2}\right)$ to basis $\left(\vec{f}_{1}, \vec{f}_{2}\right)$;

Answer: $\left[\begin{array}{ll}1 & 3 \\ 2 & 4\end{array}\right]$
(b) Find the matrix of coordinate transformation for the change from basis $\left(\vec{f}_{1}, \overrightarrow{f_{2}}\right)$ to basis $\left(\vec{e}_{1}, \vec{e}_{2}\right)$;

Answer: $\left[\begin{array}{cc}-2 & 1.5 \\ 1 & -0.5\end{array}\right]$
(c) Find numbers a, b such that $\vec{v}=a \overrightarrow{f_{1}}+b \overrightarrow{f_{2}}$.

Answer: $a=-1, b=2$
4. (9 points)
(a) Give a definition of basis in a vector space.

Answer: Basis in a space is a collection of linearly independent vectors which span the space.
It has the property that every vector in the space can be represented as a linear combination of basis in a unique way.
(b) Find a basis in the column space of matrix $\left[\begin{array}{cccccc}1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 6 & 9 & 12 & 13 & 14\end{array}\right]$

Answer: basis in column space is $\left[\begin{array}{l}1 \\ 3\end{array}\right],\left[\begin{array}{c}5 \\ 13\end{array}\right]$.
(c) Find a basis in the eigenspace of matrix $\left[\begin{array}{ccc}2008 & 2008 & 2008 \\ 0 & 2008 & 2008 \\ 0 & 0 & 2008\end{array}\right]$

Answer: Eigenvalue $\lambda=2008$ has multiplicity 3 . The only eigenvector is $X=(t, 0,0)^{T}$. Thus basis consists of only one vector $(1,0,0)^{T}$.
5. (14 points)
(a) Let $\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}$ be an orthonormal basis in a vector space S. Let (x, y, z) denote coordinates of a vector $\vec{w} \in S$ w.r.t this basis. Prove that

$$
x=\vec{w} \cdot \vec{v}_{1}, \quad y=\vec{w} \cdot \vec{v}_{2}, \quad z=\vec{w} \cdot \vec{v}_{3} .
$$

Answer: there are many ways to prove this statement. One possibility is as follows. Let

$$
\vec{w}=x \vec{v}_{1}+y \vec{v}_{2}+z \vec{v}_{3} .
$$

Then

$$
\vec{w} \cdot \vec{v}_{1}=x \vec{v}_{1} \cdot \vec{v}_{1}+y \vec{v}_{2} \cdot \vec{v}_{1}+z \vec{v}_{3} \cdot \vec{v}_{1} .
$$

Since the basis is orthonormal we have $\vec{v}_{1} \cdot \vec{v}_{1}=1, \vec{v}_{2} \cdot \vec{v}_{1}=0, \vec{v}_{3} \cdot \vec{v}_{1}=0$. Thus $\vec{w} \cdot \vec{v}_{1}=x$. Similarly we find that $\vec{w} \cdot \vec{v}_{2}=y$ and $\vec{w} \cdot \vec{v}_{3}=z$.
(b) Show that the following set of vectors is an orthogonal basis in space $S=\operatorname{span}\left(\vec{f}_{1}, \vec{f}_{2}, \vec{f}_{3}\right)$

$$
\overrightarrow{f_{1}}=\left[\begin{array}{l}
2 \\
0 \\
2 \\
1
\end{array}\right], \quad \overrightarrow{f_{2}}=\left[\begin{array}{c}
1 \\
0 \\
1 \\
-4
\end{array}\right], \quad \overrightarrow{f_{3}}=\left[\begin{array}{l}
0 \\
3 \\
0 \\
0
\end{array}\right]
$$

Answer: Check directly that $\vec{f}_{1} \cdot \overrightarrow{f_{2}}=0, \overrightarrow{f_{1}} \cdot \overrightarrow{f_{3}}=0, \overrightarrow{f_{2}} \cdot \overrightarrow{f_{3}}=0$.
Also the vectors are linearly independent. Thus they form an orthogonal basis in S.
(c) Obtain orthonormal basis from vectors $\vec{f}_{1}, \vec{f}_{2}, \vec{f}_{3}$ given in (b), by normalization. Call the vectors you found $\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}$.

Answer:

$$
\vec{v}_{1}=\frac{1}{3}\left[\begin{array}{l}
2 \\
0 \\
2 \\
1
\end{array}\right], \quad \vec{v}_{2}=\frac{1}{3 \sqrt{2}}\left[\begin{array}{c}
1 \\
0 \\
1 \\
-4
\end{array}\right], \quad \vec{v}_{3}=\left[\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right]
$$

(d) Find coordinates of $\vec{w}=(4,9,4,-7)^{T}$ w.r.t the orthonormal basis $\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}$ found in (c).

Answer: Use statement from (a) to find

$$
x=\vec{w} \cdot \vec{v}_{1}=3, \quad y=\vec{w} \cdot \vec{v}_{2}=6 \sqrt{2}, \quad z=\vec{w} \cdot \vec{v}_{3}=9
$$

