MATH 2051 MIDTERM EXAM on February 22,2008

Instructor: Margo Kondratieva. Student:

- 1. (9 points)
 - (a) Complete the definition:
 A linear (vector) space is a collection of vectors with the following properties:
 (1)
 - (2)
 - (3)
 - (b) Use you definition in part (a) to prove that: The collection of all vectors $\vec{v} = (x, y, z)^T$ which are orthogonal to vector

$$\vec{n} = (22, 2, 2008)^T$$

form a linear (vector) space.

2. (9 point)

(a) Give a definition of *n* linearly independent vectors.

- (b) Let the columns of a rectangular $m \times n$ matrix A be linearly independent vectors, and $m \neq n$. Which of the following are TRUE?
 - (1) m > n
 - (2) m < n
 - (3) linear independence of columns is possible only for m = n.
 - (4) system AX = B has a **unique** solution for **any** $m \times 1$ matrix B.
 - (5) system AX = B has a **parametric** solution for some $m \times 1$ matrices B.
 - (6) system AX = B has a **unique** solution for **some** $m \times 1$ matrices B.
- (c) Give an example of a matrix with four linearly independent rows. What is the rank of your matrix?

3. (8 point)

Let $\vec{f_1} = \vec{e_1} + 2\vec{e_2}$, $\vec{f_2} = \vec{3}e_1 + 4\vec{e_2}$, and $\vec{v} = 5\vec{e_1} + 6\vec{e_2}$,

- (a) Find the matrix of coordinate transformation for the change from basis $(\vec{e_1}, \vec{e_2})$ to basis $(\vec{f_1}, \vec{f_2})$;
- (b) Find the matrix of coordinate transformation for the change from basis $(\vec{f_1}, \vec{f_2})$ to basis $(\vec{e_1}, \vec{e_2})$;
- (c) Find numbers a, b such that $\vec{v} = a\vec{f_1} + b\vec{f_2}$.

4. (9 points)

(a) Give a definition of **basis** in a vector space.

(h) Find a havin in the column space of matrix	1	2	3	4	5	6
(b) Find a basis in the column space of matrix $\begin{bmatrix} & & \\ & $	3	6	9	12	13	14

			2008	2008	2008]	
(c)	Find a basis in the eigenspace	of matrix	0	2008	2008	
			0	0	2008	

5. (14 points)

(a) Let $\vec{v_1}, \vec{v_2}, \vec{v_3}$ be an orthonormal basis in a vector space S. Let (x, y, z) denote coordinates of a vector $\vec{w} \in S$ w.r.t this basis. Prove that

$$x = \vec{w} \cdot \vec{v}_1, \quad y = \vec{w} \cdot \vec{v}_2, \quad z = \vec{w} \cdot \vec{v}_3.$$

(b) Show that the following set of vectors is an **orthogonal basis** in space $S = span(\vec{f_1}, \vec{f_2}, \vec{f_3})$

$$\vec{f_1} = \begin{bmatrix} 2\\0\\2\\1 \end{bmatrix}, \quad \vec{f_2} = \begin{bmatrix} 1\\0\\1\\-4 \end{bmatrix}, \quad \vec{f_3} = \begin{bmatrix} 0\\3\\0\\0 \end{bmatrix}.$$

(c) Obtain **orthonormal basis** from vectors $\vec{f_1}, \vec{f_2}, \vec{f_3}$ given in (b), by normalization. Call the vectors you found $\vec{v_1}, \vec{v_2}, \vec{v_3}$.

(d) Find coordinates of $\vec{w} = (4, 9, 4, -7)^T$ w.r.t the orthonormal basis $\vec{v}_1, \vec{v}_2, \vec{v}_3$ found in (c).