MATH 2051 MIDTERM EXAM on February 22,2008

Instructor: Margo Kondratieva.
Student:

1. (9 points)
(a) Complete the definition:

A linear (vector) space is a collection of vectors with the following properties:
(b) Use you definition in part (a) to prove that:

The collection of all vectors $\vec{v}=(x, y, z)^{T}$ which are orthogonal to vector

$$
\vec{n}=(22,2,2008)^{T}
$$

form a linear (vector) space.
2. (9 point)
(a) Give a definition of n linearly independent vectors.
(b) Let the columns of a rectangular $m \times n$ matrix A be linearly independent vectors, and $m \neq n$. Which of the following are TRUE?
(1) $m>n$
(2) $m<n$
(3) linear independence of columns is possible only for $m=n$.
(4) system $A X=B$ has a unique solution for any $m \times 1$ matrix B.
(5) system $A X=B$ has a parametric solution for some $m \times 1$ matrices B.
(6) system $A X=B$ has a unique solution for some $m \times 1$ matrices B.
(c) Give an example of a matrix with four linearly independent rows. What is the rank of your matrix?
3. (8 point)

Let $\vec{f}_{1}=\vec{e}_{1}+2 \vec{e}_{2}, \overrightarrow{f_{2}}=\overrightarrow{3} e_{1}+4 \vec{e}_{2}$, and $\vec{v}=5 \vec{e}_{1}+6 \vec{e}_{2}$,
(a) Find the matrix of coordinate transformation for the change from basis $\left(\vec{e}_{1}, \vec{e}_{2}\right)$ to basis $\left(\vec{f}_{1}, \vec{f}_{2}\right)$;
(b) Find the matrix of coordinate transformation for the change from basis $\left(\overrightarrow{f_{1}}, \overrightarrow{f_{2}}\right)$ to basis $\left(\vec{e}_{1}, \vec{e}_{2}\right)$;
(c) Find numbers a, b such that $\vec{v}=a \overrightarrow{f_{1}}+b \overrightarrow{f_{2}}$.
4. (9 points)
(a) Give a definition of basis in a vector space.
(b) Find a basis in the column space of matrix $\left[\begin{array}{cccccc}1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 6 & 9 & 12 & 13 & 14\end{array}\right]$
(c) Find a basis in the eigenspace of matrix $\left[\begin{array}{ccc}2008 & 2008 & 2008 \\ 0 & 2008 & 2008 \\ 0 & 0 & 2008\end{array}\right]$

5. (14 points)

(a) Let $\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}$ be an orthonormal basis in a vector space S. Let (x, y, z) denote coordinates of a vector $\vec{w} \in S$ w.r.t this basis. Prove that

$$
x=\vec{w} \cdot \vec{v}_{1}, \quad y=\vec{w} \cdot \vec{v}_{2}, \quad z=\vec{w} \cdot \vec{v}_{3} .
$$

(b) Show that the following set of vectors is an orthogonal basis in space $S=\operatorname{span}\left(\vec{f}_{1}, \vec{f}_{2}, \vec{f}_{3}\right)$

$$
\overrightarrow{f_{1}}=\left[\begin{array}{l}
2 \\
0 \\
2 \\
1
\end{array}\right], \quad \overrightarrow{f_{2}}=\left[\begin{array}{c}
1 \\
0 \\
1 \\
-4
\end{array}\right], \quad \overrightarrow{f_{3}}=\left[\begin{array}{l}
0 \\
3 \\
0 \\
0
\end{array}\right] .
$$

(c) Obtain orthonormal basis from vectors $\vec{f}_{1}, \vec{f}_{2}, \vec{f}_{3}$ given in (b), by normalization. Call the vectors you found $\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}$.
(d) Find coordinates of $\vec{w}=(4,9,4,-7)^{T}$ w.r.t the orthonormal basis $\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}$ found in (c).

