Exercise Set 2 for Quiz on Fri Jan 25.

1. Let n be an integer greater than 1. Give a definition of:
-linear combination of n vectors;
-span of n vectors;

- n linearly dependent vectors;
-n linearly independent vectors;
-basis of a vector space;
-dimension of a vector space.

2. Give an example of:
-linear combination of two vectors;
-span of three vectors;
-four linearly dependent vectors;

- five linearly independent vectors;
-basis of a vector space;
-a vector space of dimension one and its basis.

3. Are the following triples of vectors linearly dependent or linearly independent? Justify.
a) $\vec{u}=(1,2)^{T}, \vec{v}=(2,2)^{T}, \vec{w}=(3,1)^{T}$.
b) $\vec{u}=(1,2,3)^{T}, \vec{v}=(4,5,6)^{T}, \vec{w}=(7,8,9)^{T}$.
c) $\vec{u}=(1,2,0)^{T}, \vec{v}=(1,0,2)^{T}$, $\vec{w}=(0,1,2)^{T}$.
d) $\vec{u}=(1,0,0)^{T}, \vec{v}=(2,3,0)^{T}, \vec{w}=(3,4,5)^{T}$.
4. Find dimension and basis of the linear vector space defined as
a) span $\left\{\vec{u}=(1,2,3)^{T}, \vec{v}=(3,2,1)^{T}, \vec{w}=(8,8,8)^{T}\right\}$
b) null A, where matrix $A=\left[\begin{array}{ccccc}2 & 3 & 4 & 5 & 6 \\ 0 & 0 & 0 & 3 & 4\end{array}\right]$.
c) eigenspace of A, where $A=\left[\begin{array}{ccc}10 & 20 & 30 \\ 0 & 10 & 0 \\ 0 & 0 & 10\end{array}\right]$.
