Margo Kondratieva

Math 2051 W2008

Exercise Set 2 for Quiz on Fri Jan 25.

- Let n be an integer greater than 1. Give a definition of:

 linear combination of n vectors;
 span of n vectors;
 n linearly dependent vectors;
 n linearly independent vectors;
 basis of a vector space;
 dimension of a vector space.

 Give an example of:
 - -linear combination of two vectors;
 -span of three vectors;
 -four linearly dependent vectors;
 five linearly independent vectors;
 -basis of a vector space;
 -a vector space of dimension one and its basis.
- 3. Are the following triples of vectors linearly dependent or linearly independent? Justify.
 - a) $\vec{u} = (1,2)^T$, $\vec{v} = (2,2)^T$, $\vec{w} = (3,1)^T$. b) $\vec{u} = (1,2,3)^T$, $\vec{v} = (4,5,6)^T$, $\vec{w} = (7,8,9)^T$. c) $\vec{u} = (1,2,0)^T$, $\vec{v} = (1,0,2)^T$, $\vec{w} = (0,1,2)^T$. d) $\vec{u} = (1,0,0)^T$, $\vec{v} = (2,3,0)^T$, $\vec{w} = (3,4,5)^T$.
- 4. Find dimension and basis of the linear vector space defined as

a) span { $\vec{u} = (1, 2, 3)^T$, $\vec{v} = (3, 2, 1)^T$, $\vec{w} = (8, 8, 8)^T$ } b) null A, where matrix $A = \begin{bmatrix} 2 & 3 & 4 & 5 & 6 \\ 0 & 0 & 0 & 3 & 4 \end{bmatrix}$. c) eigenspace of A, where $A = \begin{bmatrix} 10 & 20 & 30 \\ 0 & 10 & 0 \\ 0 & 0 & 10 \end{bmatrix}$.