Math 2051 W2008

Margo Kondratieva

Exercise Set 7. Answers.

1. Find the matrix which induces projection on given vector $\vec{d} = (a, b, c)^T$ in \mathbb{R}^3 . Check you result for the case $\vec{d} = (1, 0, 0)$.

Solution:

$$\vec{w} = proj_d(\vec{v}) = \left(\frac{\vec{v} \cdot \vec{d}}{\vec{d} \cdot \vec{d}}\right) \vec{d} = \frac{1}{a^2 + b^2 + c^2} \begin{bmatrix} a^2 & ab & ac \\ ab & b^2 & bc \\ ac & bc & c^2 \end{bmatrix} \vec{v} = M\vec{v}.$$

Thus the matrix is

$$M = \frac{1}{a^2 + b^2 + c^2} \begin{bmatrix} a^2 & ab & ac \\ ab & b^2 & bc \\ ac & bc & c^2 \end{bmatrix}.$$

This becomes for a = 1, b = 0, c = 0

$$M_1 = \left[\begin{array}{rrrr} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right].$$

Let $\vec{v} = (x, y, z)^T$ then $M_1 \vec{v} = (x, 0, 0)^T$, which is the projection onto $(1, 0, 0)^T$ indeed.

2. Find the matrix which induces reflection w.r.t given vector $\vec{d} = (a, b, c)^T$ in \mathbf{R}^3 . Check you result for the case $\vec{d} = (1, 0, 0)$.

Solution: If \vec{w} is reflection of \vec{v} w.r.t. \vec{d} then all three vectors lie in the same plane and we must have the relation: $\vec{v} + \vec{w} = 2 proj_d(\vec{v})$. Then we have

$$\vec{w} = ref_d(\vec{v}) = 2proj_d\vec{v} - \vec{v} = \frac{1}{a^2 + b^2 + c^2} \begin{bmatrix} a^2 - b^2 - c^2 & 2ab & 2ac \\ 2ab & b^2 - a^2 - c^2 & 2bc \\ 2ac & 2bc & c^2 - a^2 - b^2 \end{bmatrix} \vec{v} = L\vec{v}.$$

In other words,

$$L = 2M - I == \frac{1}{a^2 + b^2 + c^2} \begin{bmatrix} a^2 - b^2 - c^2 & 2ab & 2ac \\ 2ab & b^2 - a^2 - c^2 & 2bc \\ 2ac & 2bc & c^2 - a^2 - b^2 \end{bmatrix}$$

This becomes for a = 1, b = 0, c = 0

$$L_1 = \left[\begin{array}{rrrr} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{array} \right].$$

Let $\vec{v} = (x, y, z)^T$ then $L_1 \vec{v} = (x, -y, -z)^T$, which is the reflection w.r.t $(1, 0, 0)^T$ indeed.

3. Find kernel and image of the following linear transformations in \mathbb{R}^2 . Are they invertible? - rotation by angle $\theta = \pi/3$;

Solution: Rotation matrix for $\theta = \pi/3$ has the form $\frac{1}{2} \begin{bmatrix} 1 & -\sqrt{3} \\ \sqrt{3} & 1 \end{bmatrix}$. Determinant is equal to 1, thus the matrix is invertible. Thus the transformation is invertible (rotation in opposite direction by $\pi/3$).

Kernel is $\vec{0}$, Image is \mathbf{R}^2 .

- reflection w.r.t $\vec{d} = (1, 2);$ Solution:Reflection matrix has the form $\frac{1}{5}\begin{bmatrix} -3 & 4\\ 4 & 3 \end{bmatrix}$. This matrix is invertible. Thus the transformation is invertible (reflection w.r.t. the same vector) Kernel is $\vec{0}$, Image is \mathbf{R}^2 . - stretching a vector by factor 2; Solution: Stretching matrix has the form $\begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}$, and in invertible. Thus the transformation is invertible (shrinking by factor 2). Kernel is $\vec{0}$, Image is \mathbf{R}^2 . - projection on vector $\vec{d} = (0, 5);$ Solution: Projection matrix has the form $\begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$. It is not invertible. Thus the transformation is not

invertible.

Kernel is all vector $(x, 0)^T$. Image is all vector $(0, y)^T$.

4. A student had chosen to work in a non-standard basis $\vec{f_1} = \begin{bmatrix} 0\\1 \end{bmatrix}$, $\vec{f_2} = \begin{bmatrix} 1\\0 \end{bmatrix}$ in \mathbf{R}^2 . How do the matrices of rotation, projection and reflection look in this basis?

Solution: Let $\vec{v} = (x_1, x_2)^T = x_1 E_1 + x_2 E_2$, where E_1, E_2 is the standard basis. The same vector can be written in the Student's basis as $\vec{v} = (x_1, x_2)^T = x_2 \vec{f_1} + x_1 \vec{f_2}$. Thus the matrix $C = \left[\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array} \right].$

Consequently, if $A = \begin{bmatrix} \alpha & \beta \\ \gamma & \delta \end{bmatrix}$ represents a vector transformation in the standard basis then

 $B = C^{-1}AC = \begin{bmatrix} \delta & \gamma \\ \beta & \alpha \end{bmatrix}$ represents the same transformation in the Student's basis. Thus we have in the Student's basis: Rotation $R_{\theta} = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}$; Projection w.r.t $\vec{d} = aE_1 + bE_2$ is $\frac{1}{a^2+b^2} \begin{bmatrix} b^2 & ab \\ ab & a^2 \end{bmatrix}$; Reflection w.r.t $\vec{d} = aE_1 + bE_2$ is $\frac{1}{a^2+b^2} \begin{bmatrix} -a^2 + b^2 & 2ab \\ 2ab & -b^2 + a^2 \end{bmatrix}$.

5. Find the area of parallelogram obtained from a unit square by a linear transformation induced by a degenerate matrix.

Answer: Area =0.