
Math 2051 W2008 Margo Kondratieva

Week 10-11. Quadratic forms. Principal axes theorem.
Text reference: this material corresponds to parts of sections 5.5, 8.2, 8.3 8.9.

Section 4.1 Motivation and introduction.

Consider an inner product space which is Rn equipped with inner product < ~u,~v >= ~uT A~v,
where A is a n× n positive definite matrix.

Recall that the unit ball is the collection of all vectors ~u such that ||~u|| = 1, or equivalently,
< ~u, ~u >= 1. In the low-dimension Euclidian spaces (A = I) the unit ball is a circle in 2D and a
sphere in 3D. That is, unit ball in 2D contains all ~u = (x, y)T such that x2 + y2 = 1, and unit ball
in 3D contains all ~u = (x, y, z)T such that x2 + y2 + z2 = 1.

Question: What could be the geometrical shape of a unit ball in 2D and 3D for A other that
I (but positive definite)?

In section 4.5 we will prove that ANY unit ball in 2D is an ellipse, and ANY unit ball in 3D is
an ellipsoid.

(Note that we are we are talking only about inner product spaces with inner product defined
via a positive definite matrix.)

Definition 1. Quadratic form in variables x1, x2, x3 is a linear combination of squares x2
1, x

2
2, x

2
3

and cross terms x1x2, x1x3, x2x3.
More general, quadratic form in variables x1, x2, ..., xn is a linear combination of squares

x2
1, x

2
2, ..., x

2
n and cross terms xixj , where i 6= j and 1 ≤ i, j ≤ n.

For example, general quadratic form in two variables is

q = ax2
1 + bx1x2 + cx2

2,

where a, b, c are some numbers, called coefficients. Observe that in 2D quadratic form can be

written as q = ~vT A~v, where ~v = (x1, x2)T and A =
[

a b/2
b/2 c

]
.

Similarly, for arbitrary n one can introduce ~v = (x1, x2, ..., xn)T and rewrite quadratic form as
q = ~vT A~v with some symmetric matric A (AT = A).

Remark: There is no requirement for A other than being symmetric in order to define a
quadratic form. If A happen to be positive definite then such quadratic form q = ~vtA~v defines
the norm of ~v (namely, q = ||~v||2) in the inner product space with inner product defined by A:
< ~u,~v >= ~uT A~v.

We will identify n× 1-matrix X with ~v = (x1, x2, ..., xn).
Thus we will write general quadratic form as q = XT AX instead of q = ~vT A~v.

Problem 1. Let q = x2
1 + x1x2 + x2

2.
1) Find A such that q = XT AX, where X = (x1, x2)T .

2) Denote Y = (y1, y2)T . Let X = MY , where M = 1√
2

[ −1 −1
1 −1

]
.

Rewrite q in Y -variables and find B such that q = Y T BY , where ~Y = (y1, y2)T .
Solution:

1) A =
[

1 1/2
1/2 1

]

2) We have x1 = 1√
2
(−y1 − y2), x2 = 1√

2
(y1 − y2). Thus q = x2

1 + x1x2 + x2
2 = y2

1/2 + (3/2)y2
2 .

Therefore,

B =
[

1/2 0
0 3/2

]
.
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In this problem a change of variables (from (x1, x2) to (y1, y2)) was made such that in new
variables quadratic form has no cross terms (matrix B is diagonal). This process is called
diagonalization of quadratic form.

Question: Is it always possible to find a change of variables such that in new variables quadratic
form has no cross terms?

In order to answer this question we have to review some facts about diagonalization of a square
matrix and take into account that matrices defining quadratic forms are symmetric. We will answer
the question in section 4.5 of this handout.

Section 4.2 Similarity and diagonalization.

Definition 2.
Two n× n matrices are similar, A ∼ B, if A = P−1BP for some invertible matrix P .

Theorem 1. If matrices A and B are similar then they have the same determinant, rank, trace,
characteristic polynomial and eigenvalues.

(Trace of a matrix, trA is the sum of its diagonal elements. An important property of trace is
trAB=trBA, which can be verified by direct computation.)

Theorem 2. If n×n matrix has n distinct eigenvalues then it is similar to a diagonal matrix with
the eigenvalues on the diagonal: A ∼ D.

Proof: We have AXk = λkXk for k = 1, 2, .., n. Compose matrix P whose columns are the
eigenvectors: P = [X1|X2|...|Xn]. Observe that AP = PD, where D is a diagonal matrix with the
eigenvalues λ1, ..., λn on the diagonal. It can be shown that the eigenvectors X1,..,Xn are linearly
independent, and P is invertible. Thus P−1AP = D. ¤

Let λ be an eigenvalue of A. Denote by mult(λ) the multiplicity of the eigenvalue, and by
Eλ corresponding eigenspace. Note that dimEλ ≤mult(λ). If all eigenvalues are distinct then all
eigenvalues have multiplicity one and dimEλ =mult(λ) = 1 for all eigenvalues.

Theorem 3. Let dimEλ =mult(λ) for each eigenvalue of matrix A. Then A is similar to a diagonal
matrix.

Proof: If dimEλ =mult(λ) = r then there exists basis of r (linearly independent) vectors
X1, .., Xr in this eigenspace, and they can be taken as columns of matrix P. Since the sum of
multiplicities of all eigenvalues is n, we will collect n linearly independent vectors and construct
an invertible matrix P such that P−1AP = D. Multiple eigenvalues will repeat on the diagonal of
D according to their multiplicities. ¤

Section 4.3 Symmetric matrices.

Definition 3. An n× n matrix A is symmetric if AT = A.
Observe that some matrices with real elements may have complex eigenvalues, for example,[

0 −2
2 0

]
has characteristic equation λ2 +4 = 0, thus imaginary eigenvalues ±2i. It is interesting

to know that:

Theorem 4. All eigenvalues of a symmetric matrix are real numbers.
Proof: We restrict ourselves to the case n = 2. For n ≥ 3 one needs to operate with complex

numbers, so we leave this case for now.
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Let A =
[

a b
b d

]
. Then characteristic equation is λ2−(a+c)λ+(ac−b2) = 0. Its determinant

d = (a − c)2 + 4b2 ≥ 0. Since the determinant is never negative the matrix can’t have complex
eigenvalues. All its eigenvalues are real numbers. ¤.

Theorem 5. If n × n-matrix A is symmetric then eigenvectors of A corresponding to distinct
eigenvalues are orthogonal.

Proof:
1. Let X, Y be any n-vectors (n× 1-matrices) and A = AT .
We have (AX) · Y = (AX)T Y = XT AT Y = XT AY = X · (AY ).
2. Let AX = λX, and AY = µY , and λ 6= µ.
We have λ(X · Y ) = (λX) · Y = AX · Y =(use 1.)=X · (AY ) = X · (µY ) = µX · Y .
Thus (λ− µ)(X · Y ) = 0 but λ 6= µ, so X · Y = 0. Therefore the vectors are orthogonal. ¤

Theorem 6. An n × n-matrix A is symmetric if and only if it has an orthogonal set of n
eigenvectors.

Remark: This orthogonal set of eigenvectors can be converted to an orthonormal set by nor-
malization. Let matrix P be formed from the orthonormal eigenvectors of matrix A. Then P has
property PT P = I and is invertible. Thus P−1 = PT . Matrix P is so called an orthogonal matrix.

Definition 4. Matrix M is called orthogonal if M−1 = MT .
(The columns of an orthogonal matrix form an orthonormal set of linearly independent vectors.)

Theorem 7. (Principal Axes Theorem).
An n× n-matrix A is symmetric if and only if PT AP = D for some orthogonal matrix P and

diagonal matrix D.

Definition 5. The orthonormal set of eigenvectors of a symmetric matrix A (i.e. the columns of
matrix P ) is called the set of principle axes for corresponding quadratic form q = ~vT A~v.

The geometrical meaning of this term will be seen in section 4.5 of this handout.

Section 4.4 Positive definite matrices.

Recall that we had two definitions of positive definite matrices. Now we are ready to prove
that the two definitions are equivalent.

Theorem 8. The following two statements are equivalent:
(I) Matrix A is symmetric and all its n eigenvalues are positive;
(II) quadratic form q = XT AX > 0 for all X 6= 0 in Rn.
Proof:
1. By Principal Axes Theorem, A is symmetric means PT AP = D, or A = PDPT .
2. Consider q = XT AX = XT (PDPT )X = XT (PT )T DPT X = (PT X)T DPT X = Y T DY ,

where Y = PT X. Thus q = Y T DY = λ1y
2
1 + λ2y

2
2 + · · ·λny2

n. This expression is always positive
because all eigenvalues λk are positive and not all yk are zeroes (since X 6= 0). ¤

Section 4.5 Diagonalization of quadratic forms.

We use notations X = (x1, x2, ..., xn)T , Y = (y1, y2, ..., yn)T .

Theorem 9. Let q = XT AX be a quadratic form in variables x1, x2, ..., xn, and AT = A. Let
P be an orthogonal matrix such that PT AP = D, where D is a diagonal matrix. Define new
variables y1, y2, ..., yn via the formula X = PY . Then quadratic form q has no cross term in new
variables, in other words q = Y T DY = λ1y

2
1 + λ2y

2
2 + · · ·λny2

n.
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Proof: Substitute X = PY into q = XT AX and use PT AP = D to obtain q = XT AX =
(PY )T A(PY ) = Y T PT APY = Y T DY . The existence of P follows from the Principle Axes
Theorem. Recall that the columns of P are orthonormal eigenvectors of A corresponding to the
eigenvalues λ1, .., λn. ¤

Problem 2. Identify the change of variables that will diagonalize the quadratic form and rewrite
the form w.r.t these new variables

q = 7x2
1 + x2

2 + x2
3 + 8x1x2 + 8x1x3 − 16x2x3.

Solution:

Rewrite the form as q = XT AX, X = (x1, x2, x3)T and A =




7 4 4
4 1 −8
4 −8 1


.

This matrix has the characteristic equation (λ − 9)2(λ + 9) = 0, that is eigenvalues λ1 = 9 of
multiplicity 2 and λ3 = −9 of multiplicity 1.

Corresponding eigenvectors are ~f1 = (2, 2,−1)T , ~f2 = (2,−1, 2)T , ~f3 = (−1, 2, 2)T . This set
of eigenvectors is orthogonal. Each vector has length 3. Thus corresponding orthonormal set
is ~ej = 1

3
~fj , j = 1, 2, 3. Compose matrix P whose columns are the orthonormal eigenvectors.

P =
1
3




2 2 −1
2 −1 2
−1 2 2


. This matrix is orthogonal: P−1 = PT . Accidently this matrix happen

to be symmetric as well - normally it would not be the case.
The change of variables is defined by X = PY or Y = P−1X = PT X. That is
x1 = 1

3 (2y1 + 2y2 − y3),
x2 = 1

3 (2y1 − y2 + 2y3),
x3 = 1

3 (−y1 + 2y2 + 2y3).
Equivalently:
y1 = ~e1 ·X = 1

3 (2x1 + 2x2 − x3),
y2 = ~e2 ·X = 1

3 (2x1 − x2 + 2x3),
y3 = ~e3 ·X = 1

3 (−x1 + 2x2 + 2x3).
Substitution of X = PY into the form q = XT AX gives the diagonal form: q = 9y2

1 +9y2
2−9y2

3 .

In 2D we have the following statement.

Theorem 10. Consider q = ax2
1 + bx1x2 + cx2

2, where a 6= 0, b 6= 0, c 6= 0. There is a counter-
clockwise rotation of the coordinate axes about the origin such that in the new coordinate system
q has no cross terms.

Proof:
1. Let (x1, x2) be coordinate of some vector ~v in the standard basis E1 = (1, 0)T , E2 = (0, 1)T .

Introduce new basis F1 = (cos θ, sin θ)T , F2 = (− sin θ, cos θ)T and let (y1, y2) be coordinate of the
same vector ~v in the new basis, that is

~v = (x1, x2)T = x1E1 + x2E2 = y1F1 + y2F2.

This means that the matrix of coordinate transformation from basis (E1, E2) to basis (F1, F2) is

M =
[

cos θ − sin θ
sin θ cos θ

]
and X = MY , where X = (x1, x2), Y = (y1, y2) (see section 2.3 from

handout 2 (Week 2-3)).
Matrix M makes counterclockwise θ-rotation of the standard basis (coordinate axes) about the

origin.
2. From x1E1 + x2E2 = y1F1 + y2F2 we have

x1 = y1 cos θ − y2 sin θ, x2 = y1 sin θ + y2 cos θ.
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Substitute these expressions into q = ax2
1 + bx1x2 + cx2

2. The coefficient of the cross term y1y2

becomes (c− a) sin(2θ) + b cos(2θ). To make this coefficient zero we chose θ such that

tan(2θ) =
b

a− c
, a 6= c,

or θ = π/4 for a = c. ¤

Theorem 11. The graph of equation ax2
1 + bx1x2 + cx2

2 = 1 is an ellipse for b2 − 4ac < 0 or a
hyperbola for b2 − 4ac > 0.

Proof: Rewrite q = XT AX, where A =
[

a b/2
b/2 c

]
.

Note that A = PDPT , thus detA = det D or ac− b2/4 = λ1λ2.

But we know that canonical equation of ellipse
x2

α2
+

y2

β2
= 1 corresponds to the case λ1λ2 =

α−2β−2 > 0, thus ac− b2/4 must be positive for the ellipse case. Similarly, canonical equation of

hyperbola
x2

α2
− y2

β2
= 1 corresponds to the case λ1λ2 = −α−2β−2 < 0, thus ac − b2/4 must be

negative for the hyperbola case.

Problem 3. Determine whether the curve 2x2 +5xy + y2 = 1 is an ellipse or hyperbola. Find the
angle between each of its two axes of symmetry and the horizontal OX axis. Sketch the graph of
the curve.

Solution: 1. b2 − 4ac = 25− 8 > 0 thus the curve is hyperbola.
2. the angle θ is found from tan(2θ) = b

a−c = 5, thus θ = 0.5 arctan(5) ≈ 40 (deg); the second
axis forms an angle 90 + 0.5 arctan(5) ≈ 130(deg) or ( -50 deg).

3. the asymptotes are found by substitution y = mx into the equation with zero RHS:
2x2 + 5xy + y2 = 0; then we have equation for m: 2 + 5m + m2 = 0 and find the slopes of the

asymptotes: m = (−5 ± √17)/2, or m1 ≈ −4.56 (or -77 deg w.r.to horizontal) and m2 ≈ −0.44
(or -23 deg w.r.to horizontal).

Note that
(−23) + (−77)

2
= −50, which confirms the axis of the symmetry: asymptotes must

be symmetric w.r.to the axes of the symmetry of the hyperbola.
4. To sketch the hyperbola we first plot the asymptotes y = m1x and y = m2x. We plot the

symmetry exes: two lines forming angles θ and 90 + θ with the horizontal axis.
Then we identify few points which lie on the curve 2x2 + 5xy + y2 = 1, for instance: x = 0,

y = ±1.
Then we plot the curve according to its symmetry, asymptotes and identified points:

Theorem 12. The unit ball in R2 with inner product < ~u,~v >= ~uT A~v (defined by a positive
definite matrix A) is an ellipse.

Proof: The unit ball contains all vectors X such that XT AX = 1. The graph of equation
XT AX = 1, where A has positive eigenvalues, is an ellipse. Note that eigenvectors of A define
the axes of symmetry of the ellipse. That explains the name: principal axes of quadratic form
q = XT AX.
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Math 2051 W2008 Margo Kondratieva

Exercise Set 6 for Quiz on Wed March 19 (or March 24?).

1 and 2. Give a definition and an example of:
-unit ball in an inner product space;
-quadratic form in variables x1, ...xn;
-two similar matrices;
-symmetric matrix;
-orthogonal matrix;
-positive definite matrix;
-characteristic polynomial for a square matrix; (M2050)
-eigenvalue of a matrix; multiplicity of an eigenvalue;(M2050)
-eigenspace;
- matrix of rotation about the origin in 2D;
- set of principal axes for a quadratic form;
-ellipse;
-hyperbola;

3. Let A =
[

a b
b c

]
. Find eigenvalues and corresponding eigenvectors. Find an orthogonal matrix

P such that PT AP is diagonal. Find the set of principle axes for quadratic form q = XT AX.

4. Identify the change of variables that will diagonalize the quadratic form and rewrite the form
w.r.to these new variables.

(a) q = x2
1 + 4x1x2 + x2

2

(b) q = x2
1 − 2x1x2 + 2x2x3 + x2

3

5. Determine whether the following curve is an ellipse or hyperbola. Find the angle between each
of its two axes of symmetry and the horizontal OX axis. Sketch the graph of the curve.

(a) 3x2 + 4xy + y2 = 1
(b) 3x2 + 4xy + 2y2 = 1

6. Prove that eigenvectors of a symmetric matrix corresponding to distinct eigenvalues are orthog-
onal.

7. Consider an inner product space which is R2 equipped with inner product < ~u,~v >= ~uT A~v,
where A is a 2× 2 positive definite matrix. Explain in details why the unit ball in this space is an
ellipse.

8. Consider an inner product space which is R3 equipped with inner product < ~u,~v >= ~uT A~v,
where A is a 2× 2 positive definite matrix. Explain in details why the unit ball in this space is an
ellipsoid.
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