
Math 2051 W2008 Margo Kondratieva

Week 1 Linear vector spaces and subspaces.

Section 1.1 The notion of a linear vector space.
For the purpose of these notes we regard (m×1)-matrices as m-dimensional

vectors, and write ~v = (v1, v2, ..., vm)T . (We write standard column vectors as
transposed row vectors in order to save space.)

For instance, the collection of all 2-dimensional vectors ~v = (x, y)T consti-
tutes the Euclidian plane R2. This collection has the properties:

(1) zero vector (0, 0)T belongs to R2;
(2) the sum of any two 2-dimensional vectors is again a 2-dimensional vector;
(3) a multiple of any 2-dimensional vector is again a 2-dimensional vector.
For example, (1, 2)T + (3, 4)T = (4, 6)T and (−3)(1, 2)T = (−3,−6)T .
The fact that R2 has the properties listed above makes it a linear vector

space.
Similarly R3, a collection of 3-dimensional vectors ~v = (x, y, z)T is a linear

vector space because all three properties hold for it:
(1) zero vector (0, 0, 0)T belongs to R3;
(2) the sum of any two 3-dimensional vectors is again a 3-dimensional vector;
(3) a multiple of any 3-dimensional vector is again a 3-dimensional vector.

With these examples in mind we now give a general formal definition.

Definition 1. A linear vector space is a collection of vectors with the following
properties:

(1) it contains the zero vector ~0 — such that for any vector ~v from the
collection ~0 + ~v = ~v +~0 = ~v;

(2) the sum of any two vectors from the collection is again in the collection;
(3) a multiple of any vector from the collection is again in the collection.

Problem 1. Let ~n = (1, 2, 3)T . Consider all vectors ~v = (x, y, z)T which are
orthogonal to vector ~n: ~v · ~n = 0, or equivalently, x + 2y + 3z = 0. Show that
the collection of all such vectors ~v is a linear vector space.

Solution. We need to check the three properties listed in the definition of
linear vector space.

(1) If x = y = z = 0 then x+2y+3z = 0. Thus zero (0, 0, 0)T vector belongs
to the collection.

(2) Let ~v = (x1, y1, z1)T and ~u = (x2, y2, z2)T are in the collection. This
means x1 + 2y1 + 3z1 = 0 and x2 + 2y2 + 3z2 = 0.

For the sum ~v + ~u we have:
(x1 + x2) + 2(y1 + y2) + 3(z1 + z2) = (x1 + 2y1 + 3z1) + (x2 + 2y2 + 3z2) = 0.
Thus, the sum of any two vectors from the collection also belongs to the

collection.
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(3)Let ~v = (x1, y1, z1)T . This means x1 + 2y1 + 3z1 = 0. For a multiple of ~v
we have k~v = (kx1, ky1, kz1)T and kx1 + 2ky1 + 3kz1 = k(x1 + 2y1 + 3z1) = 0.
Thus a multiple of any vector from the collection is again in the collection.

Since all three properties hold, the collection of vectors orthogonal to the
vector ~n = (1, 2, 3)T is a linear vector space.

Similarly, one can prove the following statement (do it as an exercise!).

Theorem 1. Given any nonzero vector ~n = (n1, n2, n3)T , a collection of all
vectors orthogonal to ~n forms a linear vector space.

Remark 1. Note that geometrically this collection of vectors is a plane with
normal vector ~n = (n1, n2, n3)T and passing through the origin. The plane has
equation n1x + n2y + n3z = 0.

For instance, if ~n = (0, 0, 1)T the plane has equation z = 0 and consists of
vectors ~v = (x, y, 0). This plane coincides with the Euclidian plane R2. In such
a case we say that R2 is a linear subspace of R3.

Definition 2. A linear subspace of a linear vector space is any subset of this
linear vector space such that it is a linear vector space itself.

Section 1.2 Geometry of linear subspaces in R3.
From Theorem 1 and Remark 1 it follows that:

Theorem 2. Any plane passing through the origin is a linear subspace in the
linear space R3.

Problem 2. Show that all (x, y, z)T such that 5x− 6y + 7z = 0 form a linear
space which is a linear subspace of R3.

Solution. Equation 5x− 6y + 7z = 0 describes a plane passing through the
origin and having normal vector ~n = (5,−6, 7)T . All vectors (x, y, z)T such that
5x − 6y + 7z = 0 belong to this plane and are orthogonal to ~n = (5,−6, 7)T .
They form a linear vector space by Th. 1 and this space is a subspace of R3 by
Th. 2.

Problem 3. Show that all (x, y, z)T such that 5x−6y+7z = 1 does NOT form
a linear subspace of R3.

Solution. Equation 5x − 6y + 7z = 1 again describes a plane with normal
vector ~n = (5,−6, 7)T . But now the plane does NOT pass through the origin
because if x = y = z = 0 then 5x− 6y + 7z = 0 6= 1. This means that the zero
vector does NOT belong to this collection of vectors, which by Def. 1 makes
this collection NOT a linear vector space. Thus, by Def. 2 this is NOT a linear
subspace of R3.

Problem 4. Let ~d = (1, 2, 3)T . Show that the collection of all vectors pro-
portional to ~d, that is (x, y, z)T = k~d, where k is any number, forms a linear
subspace in R3.
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Solution. We have to show that this collection forms a linear vector space.
Then, by Def 2, we will obtain the required statement.

In order to show that this collection forms a linear vector space we need to
check all the properties in Def. 1.

(1) Zero vector belongs to the collection: if k = 0 then k~d = (0, 0, 0)T .
(2) If ~v and ~u belong to the collection, that is ~v = k1

~d and ~u = k2
~d, then

~v+~u = k1
~d+k2

~d = (k1+k2)~d = k~d. Thus the sum also belongs to the collection.
(3) If ~v belong to the collection, that is ~v = k1

~d, then s~v = s(k1
~d) = k~d.

Thus the multiple of ~v also belongs to the collection.
Since all three properties hold, the collection of vectors proportional to the

vector ~d = (1, 2, 3)T is a linear vector space by Def 1.
Since the collection of vectors proportional to the vector ~d = (1, 2, 3)T is

a subset of all 3-dimensional vectors (x, y, z)T and itself forms a linear vector
space, this collections is a linear subspace of R3.

Similarly, one can prove the following statement (do it as an exercise!).

Theorem 3. Given any nonzero vector ~d = (d1, d2, d3)T , a collection of all
vectors proportional to ~d forms a linear vector space. This collection is a linear
subspace of R3.

Remark 2. Note that geometrically this collection of vectors is a line with
direction vector ~d = (d1, d2, d3)T and passing through the origin. The line has
equation (x, y, z)T = s(d1, d2, d3)T , where s is any number.

From Theorem 3 and Remark 2 it follows that:

Theorem 4. Any line passing through the origin is linear space, and thus is a
linear subspace in the linear space R3.

Problem 5. Show that the following collections of vectors are NOT linear
spaces:

(a) all triples (x, y, z)T = (k + 4, 2k + 5, 3k + 6)T , where k is any number;
(b) all triples (x, y, z) such that x2 + y2 + z2 = 1;
(c) all triples (x, y, z) such that x2 − y2 = 0 and z = 0;
(d) all triples (x, y, z) such that x ≥ 0, y ≥ 0, z ≥ 0.
Solutions:
(a) This collection of vectors does not contain the zero vector (0, 0, 0). In

order to have x = 0 one needs to take k = −4, but this value of k makes y = −3,
z = −6. Thus it is impossible to make all three components equal to zero with
the same value of k.

Note also that collection of points (x, y, z)T = (k +4, 2k +5, 3k +6)T , where
k is any number forms a line not passing through the origin.

(b) This collection of vectors does not contain the zero vector (0, 0, 0). Let
x = y = z = 0. Then x2 + y2 + z2 = 0 6= 1.
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Note also that this collection of points forms a surface of the sphere of radius
1 with center at the origin.

(c) This collection of vectors contains the zero vector (0, 0, 0): If x = y =
z = 0 then x2 − y2 = 0.

But the sum of two vectors from the collection does not always belong to
the collection. Take for example ~u = (1, 1, 0) and ~v = (1,−1, 0). Then ~u + ~u =
(2, 0, 0) does not satisfy the equation x2 − y2 = 4 6= 0.

Note also that this collection of points forms a two lines intersecting at the
origin.

(d) This collection of vectors violates 3rd property of a linear space: a mul-
tiple of any vector from the collection is not always in the collection. Take
~u = (1, 1, 1) and k = −2. Then k~u = (−2,−2,−2) does not satisfy the restric-
tion with defines the collection.

Note also that this collection of points forms the first octant of R3.
Next theorem is the main statement in this section because it geometrically

describes all possible linear subspaces in R3.

Theorem 5. The only linear subspaces in R3 are
(1) a plane passing through the origin;
(2) a line passing through the origin;
(3) the origin itself
(4) the entire R3.

Remark 3. In R3 a line and a plane are called proper subspaces. The origin
and the entire R3 are referred to as either trivial, extreme or degenerate cases.

Section 1.3 Homogeneous systems of linear equations and linear sub-
spaces in R3.

In this section we consider two examples familiar from Linear Algebra (M2050)
and interpret the sets of solutions as linear spaces.

Problem 6. Let A be 3× 3 matrix. Show that the collection of all solutions of
a homogeneous system AX = 0 forms a linear subspace of R3.

Solution: First note that a homogeneous system always has trivial solution
X = (0, 0, 0). Thus the collection always contains the origin.

Now we will consider different cases:
(Recall that the rank of a matrix A, denoted rkA, is the number of the

leading 1s in the row-echelon form.)
(a) Let rk A = 3. Then there is only zero solution X = (0, 0, 0), which is an

example of a linear subspace, the origin by itself. An example of such a system
is x + y + z = 0, y + z = 0, z = 0. Clearly, x = y = z = 0.

(b) Let rk A = 2. Then there exist a parametric solution with one parameter.
Geometrically it represents a line passing through the origin. This is another
example of a linear subspace of R3.

An example of such a system is x + y + z = 0, y + z = 0. Clearly, x = 0,
y = t, z = −t, where t is any number.

4



(c) Let rkA = 1. Then there exist a parametric solution with two param-
eters. Geometrically it represent a plane passing through the origin. (We will
clarify this particular representation later). This is another example of a linear
subspace of R3.

An example of such a system is x + y + z = 0. Clearly, x = −t − s, y = s,
z = t, where s, t are any numbers.

(d) Let A be a zero matrix. Then the system AX = 0 does not impose any
restrictions on X. This gives the entire R3 for X.

Definition 3. A null space of a n × m matrix A is a collection of all m × 1
vector solutions of a corresponding homogeneous system AX = 0.

Theorem 6. The null space of any matrix is a linear space.

This theorem is a natural generalization of our result in Problem 6. We now
turn our attention to another important example.

Problem 7. Let A be a 3×3 matrix with an eigenvalue λ. Consider a collection
of ALL vectors X such that AX = λX. (Note that we allow X to be a zero
vector, thus we take all eigenvectors corresponding to λ as well as the zero vector
X = (0, 0, 0).)

Show that this collection forms a linear subspace in R3.
Solution: Rewrite the relation AX = λX in the form (A − λI)X = 0 and

recall that λ is found from the condition det(A−λI) = 0. Thus, X is a solution
of a homogeneous system with the matrix of coefficients (A−λI) of rank either
2, or 1 or 0. Referring to the previous problem, we get a parametric solution
with at least one parameter. Thus we will get either a line passing through the
origin or a plane through the origin, or the entire R3. In either case it will be
a linear subspace of R3.

Note that we can be a little bit more precise. If the multiplicity of the
eigenvalue is 1 then a line passing through the origin will be the case. If the
multiplicity of the eigenvalue is 2 then either a line passing through the origin
or a plane passing through the origin are possible. If the multiplicity of the
eigenvalue is 3 then any of the three cases is possible.

Section 1.4 Exercises.
1. Give a definition of: linear vector space, linear subspace, null space of a
matrix.
2. Give an example of: linear vector space, linear subspace, null space of a
matrix.
3. Explain using the definition whether the following is a linear subspace of R3:

a) any line;
b) any two lines intersecting at the origin;
c) the plane x− y = 0
d) the plane x− y − 2 = 0

4. Outline the proofs of Theorems 1 and 3.
5. Give examples of matrices for each case (line, plane, entire space) in Prob.7.
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