Week 1 Linear vector spaces and subspaces.

Section 1.1 The notion of a linear vector space.

For the purpose of these notes we regard $(m \times 1)$-matrices as m-dimensional vectors, and write $\vec{v}=\left(v_{1}, v_{2}, \ldots, v_{m}\right)^{T}$. (We write standard column vectors as transposed row vectors in order to save space.)

For instance, the collection of all 2-dimensional vectors $\vec{v}=(x, y)^{T}$ constitutes the Euclidian plane \mathbf{R}^{2}. This collection has the properties:
(1) zero vector $(0,0)^{T}$ belongs to \mathbf{R}^{2};
(2) the sum of any two 2-dimensional vectors is again a 2 -dimensional vector;
(3) a multiple of any 2 -dimensional vector is again a 2 -dimensional vector.

For example, $(1,2)^{T}+(3,4)^{T}=(4,6)^{T}$ and $(-3)(1,2)^{T}=(-3,-6)^{T}$.
The fact that \mathbf{R}^{2} has the properties listed above makes it a linear vector space.

Similarly \mathbf{R}^{3}, a collection of 3-dimensional vectors $\vec{v}=(x, y, z)^{T}$ is a linear vector space because all three properties hold for it:
(1) zero vector $(0,0,0)^{T}$ belongs to \mathbf{R}^{3};
(2) the sum of any two 3 -dimensional vectors is again a 3 -dimensional vector;
(3) a multiple of any 3 -dimensional vector is again a 3 -dimensional vector.

With these examples in mind we now give a general formal definition.
Definition 1. A linear vector space is a collection of vectors with the following properties:
(1) it contains the zero vector $\overrightarrow{0}$ - such that for any vector \vec{v} from the collection $\overrightarrow{0}+\vec{v}=\vec{v}+\overrightarrow{0}=\vec{v}$;
(2) the sum of any two vectors from the collection is again in the collection;
(3) a multiple of any vector from the collection is again in the collection.

Problem 1. Let $\vec{n}=(1,2,3)^{T}$. Consider all vectors $\vec{v}=(x, y, z)^{T}$ which are orthogonal to vector $\vec{n}: \vec{v} \cdot \vec{n}=0$, or equivalently, $x+2 y+3 z=0$. Show that the collection of all such vectors \vec{v} is a linear vector space.

Solution. We need to check the three properties listed in the definition of linear vector space.
(1) If $x=y=z=0$ then $x+2 y+3 z=0$. Thus zero $(0,0,0)^{T}$ vector belongs to the collection.
(2) Let $\vec{v}=\left(x_{1}, y_{1}, z_{1}\right)^{T}$ and $\vec{u}=\left(x_{2}, y_{2}, z_{2}\right)^{T}$ are in the collection. This means $x_{1}+2 y_{1}+3 z_{1}=0$ and $x_{2}+2 y_{2}+3 z_{2}=0$.

For the sum $\vec{v}+\vec{u}$ we have:
$\left(x_{1}+x_{2}\right)+2\left(y_{1}+y_{2}\right)+3\left(z_{1}+z_{2}\right)=\left(x_{1}+2 y_{1}+3 z_{1}\right)+\left(x_{2}+2 y_{2}+3 z_{2}\right)=0$.
Thus, the sum of any two vectors from the collection also belongs to the collection.
(3)Let $\vec{v}=\left(x_{1}, y_{1}, z_{1}\right)^{T}$. This means $x_{1}+2 y_{1}+3 z_{1}=0$. For a multiple of \vec{v} we have $k \vec{v}=\left(k x_{1}, k y_{1}, k z_{1}\right)^{T}$ and $k x_{1}+2 k y_{1}+3 k z_{1}=k\left(x_{1}+2 y_{1}+3 z_{1}\right)=0$. Thus a multiple of any vector from the collection is again in the collection.

Since all three properties hold, the collection of vectors orthogonal to the vector $\vec{n}=(1,2,3)^{T}$ is a linear vector space.

Similarly, one can prove the following statement (do it as an exercise!).
Theorem 1. Given any nonzero vector $\vec{n}=\left(n_{1}, n_{2}, n_{3}\right)^{T}$, a collection of all vectors orthogonal to \vec{n} forms a linear vector space.

Remark 1. Note that geometrically this collection of vectors is a plane with normal vector $\vec{n}=\left(n_{1}, n_{2}, n_{3}\right)^{T}$ and passing through the origin. The plane has equation $n_{1} x+n_{2} y+n_{3} z=0$.

For instance, if $\vec{n}=(0,0,1)^{T}$ the plane has equation $z=0$ and consists of vectors $\vec{v}=(x, y, 0)$. This plane coincides with the Euclidian plane \mathbf{R}^{2}. In such a case we say that \mathbf{R}^{2} is a linear subspace of \mathbf{R}^{3}.

Definition 2. A linear subspace of a linear vector space is any subset of this linear vector space such that it is a linear vector space itself.

Section 1.2 Geometry of linear subspaces in \mathbf{R}^{3}.

From Theorem 1 and Remark 1 it follows that:
Theorem 2. Any plane passing through the origin is a linear subspace in the linear space \mathbf{R}^{3}.

Problem 2. Show that all $(x, y, z)^{T}$ such that $5 x-6 y+7 z=0$ form a linear space which is a linear subspace of \mathbf{R}^{3}.

Solution. Equation $5 x-6 y+7 z=0$ describes a plane passing through the origin and having normal vector $\vec{n}=(5,-6,7)^{T}$. All vectors $(x, y, z)^{T}$ such that $5 x-6 y+7 z=0$ belong to this plane and are orthogonal to $\vec{n}=(5,-6,7)^{T}$. They form a linear vector space by Th. 1 and this space is a subspace of \mathbf{R}^{3} by Th. 2.

Problem 3. Show that all $(x, y, z)^{T}$ such that $5 x-6 y+7 z=1$ does NOT form a linear subspace of \mathbf{R}^{3}.

Solution. Equation $5 x-6 y+7 z=1$ again describes a plane with normal vector $\vec{n}=(5,-6,7)^{T}$. But now the plane does NOT pass through the origin because if $x=y=z=0$ then $5 x-6 y+7 z=0 \neq 1$. This means that the zero vector does NOT belong to this collection of vectors, which by Def. 1 makes this collection NOT a linear vector space. Thus, by Def. 2 this is NOT a linear subspace of \mathbf{R}^{3}.

Problem 4. Let $\vec{d}=(1,2,3)^{T}$. Show that the collection of all vectors proportional to \vec{d}, that is $(x, y, z)^{T}=k \vec{d}$, where k is any number, forms a linear subspace in \mathbf{R}^{3}.

Solution. We have to show that this collection forms a linear vector space. Then, by Def 2, we will obtain the required statement.

In order to show that this collection forms a linear vector space we need to check all the properties in Def. 1.
(1) Zero vector belongs to the collection: if $k=0$ then $k \vec{d}=(0,0,0)^{T}$.
(2) If \vec{v} and \vec{u} belong to the collection, that is $\vec{v}=k_{1} \vec{d}$ and $\vec{u}=k_{2} \vec{d}$, then $\vec{v}+\vec{u}=k_{1} \vec{d}+k_{2} \vec{d}=\left(k_{1}+k_{2}\right) \vec{d}=k \vec{d}$. Thus the sum also belongs to the collection.
(3) If \vec{v} belong to the collection, that is $\vec{v}=k_{1} \vec{d}$, then $s \vec{v}=s\left(k_{1} \vec{d}\right)=k \vec{d}$. Thus the multiple of \vec{v} also belongs to the collection.

Since all three properties hold, the collection of vectors proportional to the vector $\vec{d}=(1,2,3)^{T}$ is a linear vector space by Def 1 .

Since the collection of vectors proportional to the vector $\vec{d}=(1,2,3)^{T}$ is a subset of all 3-dimensional vectors $(x, y, z)^{T}$ and itself forms a linear vector space, this collections is a linear subspace of \mathbf{R}^{3}.

Similarly, one can prove the following statement (do it as an exercise!).
Theorem 3. Given any nonzero vector $\vec{d}=\left(d_{1}, d_{2}, d_{3}\right)^{T}$, a collection of all vectors proportional to \vec{d} forms a linear vector space. This collection is a linear subspace of \mathbf{R}^{3}.

Remark 2. Note that geometrically this collection of vectors is a line with direction vector $\vec{d}=\left(d_{1}, d_{2}, d_{3}\right)^{T}$ and passing through the origin. The line has equation $(x, y, z)^{T}=s\left(d_{1}, d_{2}, d_{3}\right)^{T}$, where s is any number.

From Theorem 3 and Remark 2 it follows that:

Theorem 4. Any line passing through the origin is linear space, and thus is a linear subspace in the linear space \mathbf{R}^{3}.

Problem 5. Show that the following collections of vectors are NOT linear spaces:
(a) all triples $(x, y, z)^{T}=(k+4,2 k+5,3 k+6)^{T}$, where k is any number;
(b) all triples (x, y, z) such that $x^{2}+y^{2}+z^{2}=1$;
(c) all triples (x, y, z) such that $x^{2}-y^{2}=0$ and $z=0$;
(d) all triples (x, y, z) such that $x \geq 0, y \geq 0, z \geq 0$.

Solutions:
(a) This collection of vectors does not contain the zero vector $(0,0,0)$. In order to have $x=0$ one needs to take $k=-4$, but this value of k makes $y=-3$, $z=-6$. Thus it is impossible to make all three components equal to zero with the same value of k.

Note also that collection of points $(x, y, z)^{T}=(k+4,2 k+5,3 k+6)^{T}$, where k is any number forms a line not passing through the origin.
(b) This collection of vectors does not contain the zero vector $(0,0,0)$. Let $x=y=z=0$. Then $x^{2}+y^{2}+z^{2}=0 \neq 1$.

Note also that this collection of points forms a surface of the sphere of radius 1 with center at the origin.
(c) This collection of vectors contains the zero vector $(0,0,0)$: If $x=y=$ $z=0$ then $x^{2}-y^{2}=0$.

But the sum of two vectors from the collection does not always belong to the collection. Take for example $\vec{u}=(1,1,0)$ and $\vec{v}=(1,-1,0)$. Then $\vec{u}+\vec{u}=$ $(2,0,0)$ does not satisfy the equation $x^{2}-y^{2}=4 \neq 0$.

Note also that this collection of points forms a two lines intersecting at the origin.
(d) This collection of vectors violates 3rd property of a linear space: a multiple of any vector from the collection is not always in the collection. Take $\vec{u}=(1,1,1)$ and $k=-2$. Then $k \vec{u}=(-2,-2,-2)$ does not satisfy the restriction with defines the collection.

Note also that this collection of points forms the first octant of \mathbf{R}^{3}.
Next theorem is the main statement in this section because it geometrically describes all possible linear subspaces in \mathbf{R}^{3}.

Theorem 5. The only linear subspaces in \mathbf{R}^{3} are
(1) a plane passing through the origin;
(2) a line passing through the origin;
(3) the origin itself
(4) the entire \mathbf{R}^{3}.

Remark 3. In \mathbf{R}^{3} a line and a plane are called proper subspaces. The origin and the entire \mathbf{R}^{3} are referred to as either trivial, extreme or degenerate cases.

Section 1.3 Homogeneous systems of linear equations and linear subspaces in \mathbf{R}^{3}.

In this section we consider two examples familiar from Linear Algebra (M2050) and interpret the sets of solutions as linear spaces.

Problem 6. Let A be 3×3 matrix. Show that the collection of all solutions of a homogeneous system $A X=0$ forms a linear subspace of \mathbf{R}^{3}.

Solution: First note that a homogeneous system always has trivial solution $X=(0,0,0)$. Thus the collection always contains the origin.

Now we will consider different cases:
(Recall that the rank of a matrix A, $\operatorname{denoted} \operatorname{rk} A$, is the number of the leading 1 s in the row-echelon form.)
(a) Let $\operatorname{rk} A=3$. Then there is only zero solution $X=(0,0,0)$, which is an example of a linear subspace, the origin by itself. An example of such a system is $x+y+z=0, y+z=0, z=0$. Clearly, $x=y=z=0$.
(b) Let $\operatorname{rk} A=2$. Then there exist a parametric solution with one parameter. Geometrically it represents a line passing through the origin. This is another example of a linear subspace of \mathbf{R}^{3}.

An example of such a system is $x+y+z=0, y+z=0$. Clearly, $x=0$, $y=t, z=-t$, where t is any number.
(c) Let $\operatorname{rk} A=1$. Then there exist a parametric solution with two parameters. Geometrically it represent a plane passing through the origin. (We will clarify this particular representation later). This is another example of a linear subspace of \mathbf{R}^{3}.

An example of such a system is $x+y+z=0$. Clearly, $x=-t-s, y=s$, $z=t$, where s, t are any numbers.
(d) Let A be a zero matrix. Then the system $A X=0$ does not impose any restrictions on X. This gives the entire \mathbf{R}^{3} for X.

Definition 3. A null space of a $n \times m$ matrix A is a collection of all $m \times 1$ vector solutions of a corresponding homogeneous system $A X=0$.

Theorem 6. The null space of any matrix is a linear space.
This theorem is a natural generalization of our result in Problem 6. We now turn our attention to another important example.

Problem 7. Let A be a 3×3 matrix with an eigenvalue λ. Consider a collection of ALL vectors X such that $A X=\lambda X$. (Note that we allow X to be a zero vector, thus we take all eigenvectors corresponding to λ as well as the zero vector $X=(0,0,0)$.)

Show that this collection forms a linear subspace in \mathbf{R}^{3}.
Solution: Rewrite the relation $A X=\lambda X$ in the form $(A-\lambda I) X=0$ and recall that λ is found from the condition $\operatorname{det}(A-\lambda I)=0$. Thus, X is a solution of a homogeneous system with the matrix of coefficients $(A-\lambda I)$ of rank either 2 , or 1 or 0 . Referring to the previous problem, we get a parametric solution with at least one parameter. Thus we will get either a line passing through the origin or a plane through the origin, or the entire \mathbf{R}^{3}. In either case it will be a linear subspace of \mathbf{R}^{3}.

Note that we can be a little bit more precise. If the multiplicity of the eigenvalue is 1 then a line passing through the origin will be the case. If the multiplicity of the eigenvalue is 2 then either a line passing through the origin or a plane passing through the origin are possible. If the multiplicity of the eigenvalue is 3 then any of the three cases is possible.

Section 1.4 Exercises.

1. Give a definition of: linear vector space, linear subspace, null space of a matrix.
2. Give an example of: linear vector space, linear subspace, null space of a matrix.
3. Explain using the definition whether the following is a linear subspace of \mathbf{R}^{3} :
a) any line;
b) any two lines intersecting at the origin;
c) the plane $x-y=0$
d) the plane $x-y-2=0$
4. Outline the proofs of Theorems 1 and 3 .
5. Give examples of matrices for each case (line, plane, entire space) in Prob.7.
