Week 1 Linear vector spaces and subspaces.

Section 1.1 The notion of a linear vector space.

For the purpose of these notes we regard $(m \times 1)$ -matrices as *m*-dimensional vectors, and write $\vec{v} = (v_1, v_2, ..., v_m)^T$. (We write standard column vectors as transposed row vectors in order to save space.)

For instance, the collection of all 2-dimensional vectors $\vec{v} = (x, y)^T$ constitutes the Euclidian plane \mathbf{R}^2 . This collection has the properties:

(1) zero vector $(0,0)^T$ belongs to \mathbf{R}^2 ;

(2) the sum of any two 2-dimensional vectors is again a 2-dimensional vector;

(3) a multiple of any 2-dimensional vector is again a 2-dimensional vector.

For example, $(1,2)^T + (3,4)^T = (4,6)^T$ and $(-3)(1,2)^T = (-3,-6)^T$.

The fact that \mathbf{R}^2 has the properties listed above makes it a linear vector space.

Similarly \mathbf{R}^3 , a collection of 3-dimensional vectors $\vec{v} = (x, y, z)^T$ is a linear vector space because all three properties hold for it:

(1) zero vector $(0, 0, 0)^T$ belongs to \mathbf{R}^3 ;

(2) the sum of any two 3-dimensional vectors is again a 3-dimensional vector;

(3) a multiple of any 3-dimensional vector is again a 3-dimensional vector.

With these examples in mind we now give a general formal definition.

Definition 1. A *linear vector space* is a collection of vectors with the following properties:

(1) it contains the zero vector $\vec{0}$ — such that for any vector \vec{v} from the collection $\vec{0} + \vec{v} = \vec{v} + \vec{0} = \vec{v}$;

(2) the sum of any two vectors from the collection is again in the collection;

(3) a multiple of any vector from the collection is again in the collection.

Problem 1. Let $\vec{n} = (1,2,3)^T$. Consider all vectors $\vec{v} = (x,y,z)^T$ which are orthogonal to vector \vec{n} : $\vec{v} \cdot \vec{n} = 0$, or equivalently, x + 2y + 3z = 0. Show that the collection of all such vectors \vec{v} is a linear vector space.

Solution. We need to check the three properties listed in the definition of linear vector space.

(1) If x = y = z = 0 then x + 2y + 3z = 0. Thus zero $(0, 0, 0)^T$ vector belongs to the collection.

(2) Let $\vec{v} = (x_1, y_1, z_1)^T$ and $\vec{u} = (x_2, y_2, z_2)^T$ are in the collection. This means $x_1 + 2y_1 + 3z_1 = 0$ and $x_2 + 2y_2 + 3z_2 = 0$.

For the sum $\vec{v} + \vec{u}$ we have:

 $(x_1 + x_2) + 2(y_1 + y_2) + 3(z_1 + z_2) = (x_1 + 2y_1 + 3z_1) + (x_2 + 2y_2 + 3z_2) = 0.$ Thus, the sum of any two vectors from the collection also belongs to the collection. (3)Let $\vec{v} = (x_1, y_1, z_1)^T$. This means $x_1 + 2y_1 + 3z_1 = 0$. For a multiple of \vec{v} we have $k\vec{v} = (kx_1, ky_1, kz_1)^T$ and $kx_1 + 2ky_1 + 3kz_1 = k(x_1 + 2y_1 + 3z_1) = 0$. Thus a multiple of any vector from the collection is again in the collection.

Since all three properties hold, the collection of vectors orthogonal to the vector $\vec{n} = (1, 2, 3)^T$ is a linear vector space.

Similarly, one can prove the following statement (do it as an exercise!).

Theorem 1. Given any nonzero vector $\vec{n} = (n_1, n_2, n_3)^T$, a collection of all vectors orthogonal to \vec{n} forms a linear vector space.

Remark 1. Note that geometrically this collection of vectors is a plane with normal vector $\vec{n} = (n_1, n_2, n_3)^T$ and passing through the origin. The plane has equation $n_1x + n_2y + n_3z = 0$.

For instance, if $\vec{n} = (0, 0, 1)^T$ the plane has equation z = 0 and consists of vectors $\vec{v} = (x, y, 0)$. This plane coincides with the Euclidian plane \mathbf{R}^2 . In such a case we say that \mathbf{R}^2 is a linear subspace of \mathbf{R}^3 .

Definition 2. A *linear subspace* of a linear vector space is any subset of this linear vector space such that it is a linear vector space itself.

Section 1.2 Geometry of linear subspaces in R³.

From Theorem 1 and Remark 1 it follows that:

Theorem 2. Any plane passing through the origin is a linear subspace in the linear space \mathbf{R}^3 .

Problem 2. Show that all $(x, y, z)^T$ such that 5x - 6y + 7z = 0 form a linear space which is a linear subspace of \mathbb{R}^3 .

Solution. Equation 5x - 6y + 7z = 0 describes a plane passing through the origin and having normal vector $\vec{n} = (5, -6, 7)^T$. All vectors $(x, y, z)^T$ such that 5x - 6y + 7z = 0 belong to this plane and are orthogonal to $\vec{n} = (5, -6, 7)^T$. They form a linear vector space by Th. 1 and this space is a subspace of \mathbf{R}^3 by Th. 2.

Problem 3. Show that all $(x, y, z)^T$ such that 5x - 6y + 7z = 1 does NOT form a linear subspace of \mathbb{R}^3 .

Solution. Equation 5x - 6y + 7z = 1 again describes a plane with normal vector $\vec{n} = (5, -6, 7)^T$. But now the plane does NOT pass through the origin because if x = y = z = 0 then $5x - 6y + 7z = 0 \neq 1$. This means that the zero vector does NOT belong to this collection of vectors, which by Def. 1 makes this collection NOT a linear vector space. Thus, by Def. 2 this is NOT a linear subspace of \mathbf{R}^3 .

Problem 4. Let $\vec{d} = (1,2,3)^T$. Show that the collection of all vectors proportional to \vec{d} , that is $(x, y, z)^T = k\vec{d}$, where k is any number, forms a linear subspace in \mathbf{R}^3 .

Solution. We have to show that this collection forms a linear vector space. Then, by Def 2, we will obtain the required statement.

In order to show that this collection forms a linear vector space we need to check all the properties in Def. 1.

(1) Zero vector belongs to the collection: if k = 0 then $k\vec{d} = (0, 0, 0)^T$.

(2) If \vec{v} and \vec{u} belong to the collection, that is $\vec{v} = k_1 \vec{d}$ and $\vec{u} = k_2 \vec{d}$, then $\vec{v} + \vec{u} = k_1 \vec{d} + k_2 \vec{d} = (k_1 + k_2) \vec{d} = k \vec{d}$. Thus the sum also belongs to the collection.

(3) If \vec{v} belong to the collection, that is $\vec{v} = k_1 \vec{d}$, then $s\vec{v} = s(k_1 \vec{d}) = k\vec{d}$. Thus the multiple of \vec{v} also belongs to the collection.

Since all three properties hold, the collection of vectors proportional to the vector $\vec{d} = (1, 2, 3)^T$ is a linear vector space by Def 1.

Since the collection of vectors proportional to the vector $\vec{d} = (1, 2, 3)^T$ is a subset of all 3-dimensional vectors $(x, y, z)^T$ and itself forms a linear vector space, this collections is a linear subspace of \mathbb{R}^3 .

Similarly, one can prove the following statement (do it as an exercise!).

Theorem 3. Given any nonzero vector $\vec{d} = (d_1, d_2, d_3)^T$, a collection of all vectors proportional to \vec{d} forms a linear vector space. This collection is a linear subspace of \mathbf{R}^3 .

Remark 2. Note that geometrically this collection of vectors is a line with direction vector $\vec{d} = (d_1, d_2, d_3)^T$ and passing through the origin. The line has equation $(x, y, z)^T = s(d_1, d_2, d_3)^T$, where s is any number.

From Theorem 3 and Remark 2 it follows that:

Theorem 4. Any line passing through the origin is linear space, and thus is a linear subspace in the linear space \mathbf{R}^3 .

Problem 5. Show that the following collections of vectors are NOT linear spaces:

(a) all triples $(x, y, z)^T = (k + 4, 2k + 5, 3k + 6)^T$, where k is any number; (b) all triples (x, y, z) such that $x^2 + y^2 + z^2 = 1$;

(c) all triples (x, y, z) such that $x^2 - y^2 = 0$ and z = 0;

(d) all triples (x, y, z) such that $x \ge 0, y \ge 0, z \ge 0$.

Solutions:

(a) This collection of vectors does not contain the zero vector (0,0,0). In order to have x = 0 one needs to take k = -4, but this value of k makes y = -3, z = -6. Thus it is impossible to make all three components equal to zero with the same value of k.

Note also that collection of points $(x, y, z)^T = (k+4, 2k+5, 3k+6)^T$, where k is any number forms a line not passing through the origin.

(b) This collection of vectors does not contain the zero vector (0, 0, 0). Let x = y = z = 0. Then $x^2 + y^2 + z^2 = 0 \neq 1$.

Note also that this collection of points forms a surface of the sphere of radius 1 with center at the origin.

(c) This collection of vectors contains the zero vector (0,0,0): If x = y = z = 0 then $x^2 - y^2 = 0$.

But the sum of two vectors from the collection does not always belong to the collection. Take for example $\vec{u} = (1, 1, 0)$ and $\vec{v} = (1, -1, 0)$. Then $\vec{u} + \vec{u} = (2, 0, 0)$ does not satisfy the equation $x^2 - y^2 = 4 \neq 0$.

Note also that this collection of points forms a two lines intersecting at the origin.

(d) This collection of vectors violates 3rd property of a linear space: a multiple of any vector from the collection is not always in the collection. Take $\vec{u} = (1, 1, 1)$ and k = -2. Then $k\vec{u} = (-2, -2, -2)$ does not satisfy the restriction with defines the collection.

Note also that this collection of points forms the first octant of \mathbf{R}^3 .

Next theorem is the main statement in this section because it geometrically describes all possible linear subspaces in \mathbb{R}^3 .

Theorem 5. The only linear subspaces in \mathbf{R}^3 are

- (1) a plane passing through the origin;
- (2) a line passing through the origin;
- (3) the origin itself
- (4) the entire \mathbf{R}^3 .

Remark 3. In \mathbb{R}^3 a line and a plane are called *proper* subspaces. The origin and the entire \mathbb{R}^3 are referred to as either trivial, extreme or degenerate cases.

Section 1.3 Homogeneous systems of linear equations and linear subspaces in \mathbb{R}^3 .

In this section we consider two examples familiar from Linear Algebra (M2050) and interpret the sets of solutions as linear spaces.

Problem 6. Let A be 3×3 matrix. Show that the collection of all solutions of a homogeneous system AX = 0 forms a linear subspace of \mathbb{R}^3 .

Solution: First note that a homogeneous system always has trivial solution X = (0, 0, 0). Thus the collection always contains the origin.

Now we will consider different cases:

(Recall that the rank of a matrix A, denoted $\operatorname{rk} A$, is the number of the leading 1s in the row-echelon form.)

(a) Let $\operatorname{rk} A = 3$. Then there is only zero solution X = (0, 0, 0), which is an example of a linear subspace, the origin by itself. An example of such a system is x + y + z = 0, y + z = 0, z = 0. Clearly, x = y = z = 0.

(b) Let $\operatorname{rk} A = 2$. Then there exist a parametric solution with one parameter. Geometrically it represents a line passing through the origin. This is another example of a linear subspace of \mathbb{R}^3 .

An example of such a system is x + y + z = 0, y + z = 0. Clearly, x = 0, y = t, z = -t, where t is any number.

(c) Let $\operatorname{rk} A = 1$. Then there exist a parametric solution with two parameters. Geometrically it represent a plane passing through the origin. (We will clarify this particular representation later). This is another example of a linear subspace of \mathbb{R}^3 .

An example of such a system is x + y + z = 0. Clearly, x = -t - s, y = s, z = t, where s, t are any numbers.

(d) Let A be a zero matrix. Then the system AX = 0 does not impose any restrictions on X. This gives the entire \mathbf{R}^3 for X.

Definition 3. A null space of a $n \times m$ matrix A is a collection of all $m \times 1$ vector solutions of a corresponding homogeneous system AX = 0.

Theorem 6. The null space of any matrix is a linear space.

This theorem is a natural generalization of our result in Problem 6. We now turn our attention to another important example.

Problem 7. Let A be a 3×3 matrix with an eigenvalue λ . Consider a collection of ALL vectors X such that $AX = \lambda X$. (Note that we allow X to be a zero vector, thus we take all eigenvectors corresponding to λ as well as the zero vector X = (0, 0, 0).)

Show that this collection forms a linear subspace in \mathbb{R}^3 .

Solution: Rewrite the relation $AX = \lambda X$ in the form $(A - \lambda I)X = 0$ and recall that λ is found from the condition det $(A - \lambda I) = 0$. Thus, X is a solution of a homogeneous system with the matrix of coefficients $(A - \lambda I)$ of rank either 2, or 1 or 0. Referring to the previous problem, we get a parametric solution with at least one parameter. Thus we will get either a line passing through the origin or a plane through the origin, or the entire \mathbf{R}^3 . In either case it will be a linear subspace of \mathbf{R}^3 .

Note that we can be a little bit more precise. If the multiplicity of the eigenvalue is 1 then a line passing through the origin will be the case. If the multiplicity of the eigenvalue is 2 then either a line passing through the origin or a plane passing through the origin are possible. If the multiplicity of the eigenvalue is 3 then any of the three cases is possible.

Section 1.4 Exercises.

1. Give a definition of: linear vector space, linear subspace, null space of a matrix.

2. Give an example of: linear vector space, linear subspace, null space of a matrix.

- Explain using the definition whether the following is a linear subspace of R³:
 a) any line;
 - b) any two lines intersecting at the origin;
 - c) the plane x y = 0
 - d) the plane x y 2 = 0
- 4. Outline the proofs of Theorems 1 and 3.
- 5. Give examples of matrices for each case (line, plane, entire space) in Prob.7.