1. A matrix X is symmetric if $X^{T}=X$. Since A is symmetric, $A^{T}=A$. Remembering that $(X Y)^{T}=Y^{T} X^{T}$ (transpose behaves like inverse), we find $P^{T} A P$ is symmetric because $\left(P^{T} A P\right)^{T}=P^{T} A^{T}\left(P^{T}\right)^{T}=P^{T} A P$.
2. We bring A to upper triangular form using only the third elementary row operation.

$$
A \rightarrow\left[\begin{array}{rrr}
2 & -1 & 0 \\
0 & \frac{3}{2} & -1 \\
0 & -1 & 2
\end{array}\right] \rightarrow\left[\begin{array}{rrr}
2 & -1 & 0 \\
0 & \frac{3}{2} & -1 \\
0 & 0 & \frac{4}{3}
\end{array}\right]=U^{\prime} .
$$

We have $U^{\prime}=D U$ with

$$
D=\left[\begin{array}{lll}
2 & 0 & 0 \\
0 & \frac{3}{2} & 0 \\
0 & 0 & \frac{4}{3}
\end{array}\right] \text { and } U=\left[\begin{array}{rrr}
1 & -\frac{1}{2} & 0 \\
0 & 1 & -\frac{2}{3} \\
0 & 0 & 1
\end{array}\right] .
$$

Since A is symmetric, we have $A=L D U$ with $L=U^{T}=\left[\begin{array}{rrr}1 & 0 & 0 \\ -\frac{1}{2} & 1 & 0 \\ 0 & -\frac{2}{3} & 1\end{array}\right]$.
3. (a) $\left[\begin{array}{rrr|rrr}0 & -1 & 2 & 1 & 0 & 0 \\ 2 & 1 & 4 & 0 & 1 & 0 \\ 1 & -1 & 5 & 0 & 0 & 1\end{array}\right] \rightarrow\left[\begin{array}{rrr|rrr}1 & -1 & 5 & 0 & 0 & 1 \\ 0 & -1 & 2 & 1 & 0 & 0 \\ 2 & 1 & 4 & 0 & 1 & 0\end{array}\right]$

$$
\rightarrow\left[\begin{array}{rrr|rrr}
1 & -1 & 5 & 0 & 0 & 1 \\
0 & 1 & -2 & -1 & 0 & 0 \\
0 & 3 & -6 & 0 & 1 & -2
\end{array}\right] \rightarrow\left[\begin{array}{rrr|rrr}
1 & 0 & 3 & -1 & 0 & 1 \\
0 & 1 & -2 & -1 & 0 & 0 \\
0 & 0 & 0 & 3 & 1 & -2
\end{array}\right] .
$$

There is no inverse.
(b) $\left[\begin{array}{lll|lll}1 & 1 & 1 & 1 & 0 & 0 \\ 0 & 2 & 3 & 0 & 1 & 0 \\ 5 & 5 & 1 & 0 & 0 & 1\end{array}\right] \rightarrow\left[\begin{array}{rrr|rrr}1 & 1 & 1 & 1 & 0 & 0 \\ 0 & 2 & 3 & 0 & 1 & 0 \\ 0 & 0 & -4 & -5 & 0 & 1\end{array}\right] \rightarrow\left[\begin{array}{rrr|rrr}1 & 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & \frac{3}{2} & 0 & \frac{1}{2} & 0 \\ 0 & 0 & -4 & -5 & 0 & 1\end{array}\right]$ $\rightarrow\left[\begin{array}{rrr|rrr}1 & 0 & -\frac{1}{2} & 1 & -\frac{1}{2} & 0 \\ 0 & 1 & \frac{3}{2} & 0 & \frac{1}{2} & 0 \\ 0 & 0 & 1 & \frac{5}{4} & 0 & -\frac{1}{4}\end{array}\right] \rightarrow\left[\begin{array}{rrr|rrr}1 & 0 & 0 & \frac{13}{8} & -\frac{1}{2} & -\frac{1}{8} \\ 0 & 1 & 0 & -\frac{15}{8} & \frac{1}{2} & \frac{3}{8} \\ 0 & 0 & 1 & \frac{5}{4} & 0 & -\frac{1}{4}\end{array}\right]$ The inverse is $\left[\begin{array}{rrr}\frac{13}{8} & -\frac{1}{2} & -\frac{1}{8} \\ -\frac{15}{8} & \frac{1}{2} & \frac{3}{8} \\ \frac{5}{4} & 0 & -\frac{1}{4}\end{array}\right]$
4. We have $B=A^{-1} C$ and $A^{-1}=\frac{1}{2}\left[\begin{array}{rr}4 & -1 \\ -2 & 1\end{array}\right]$, so

$$
B=\frac{1}{2}\left[\begin{array}{rr}
4 & -1 \\
-2 & 1
\end{array}\right]\left[\begin{array}{ll}
5 & 3 \\
2 & 2
\end{array}\right]=\left[\begin{array}{rr}
9 & 5 \\
-4 & -2
\end{array}\right] .
$$

5. (a) You compute $X Y$ or $Y X$. (Since X and Y are square, it is not necessary to compute both products.) If $X Y=I$ or $Y X=I$, then X and Y are inverses.
(b) $(I-A)\left(I+A+A^{2}\right)=I+A+A^{2}-A-A^{2}-A^{3}=I$, so, by (a), the inverse of $I-A$ is $I+A+A^{2}$.
(c) We are asked to find the inverse of $B=\left[\begin{array}{rrr}1 & 2 & -1 \\ 0 & 1 & 3 \\ 0 & 0 & 1\end{array}\right]$. Notice that $B=I-A$, where $A=\left[\begin{array}{rrr}0 & -2 & 1 \\ 0 & 0 & -3 \\ 0 & 0 & 0\end{array}\right]$. Since $A^{3}=0$,

$$
\begin{aligned}
B^{-1} & =I+A+A^{2} \\
& =\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]+\left[\begin{array}{rrr}
0 & -2 & 1 \\
0 & 0 & -3 \\
0 & 0 & 0
\end{array}\right]+\left[\begin{array}{lll}
0 & 0 & 6 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]=\left[\begin{array}{rrr}
1 & -2 & 7 \\
0 & 1 & -3 \\
0 & 0 & 1
\end{array}\right] .
\end{aligned}
$$

