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1. A matrix X is symmetric if XT = X. Since A is symmetric, AT = A. Remembering that

(XY)T = Y TXT (transpose behaves like inverse), we find PTAP is symmetric because

(PTAP)T = PTAT (PT )T = PTAP .

2. We bring A to upper triangular form using only the third elementary row operation.

A→









2 −1 0

0
3
2 −1

0 −1 2









→









2 −1 0

0
3
2 −1

0 0
4
3









= U ′.

We have U ′ = DU with
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Since A is symmetric, we have A = LDU with L = UT =
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There is no inverse.
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4. We have B = A−1C and A−1 =
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5. (a) You compute XY or YX. (Since X and Y are square, it is not necessary to compute

both products.) If XY = I or YX = I, then X and Y are inverses.

(b) (I −A)(I +A+A2) = I +A+A2 −A−A2 −A3 = I, so, by (a), the inverse of I −A

is I +A+A2.

(c) We are asked to find the inverse of B =
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