1. Gaussian elimination on the augmented matrix gives

$$
\begin{gathered}
{\left[\begin{array}{rrr|r}
1 & 1 & -1 & a \\
2 & -3 & 5 & b \\
5 & 0 & 2 & c
\end{array}\right] \rightarrow\left[\begin{array}{rrr|c}
1 & 1 & -1 & a \\
0 & -5 & 7 & b-2 a \\
0 & -5 & 7 & c-7 a
\end{array}\right]} \\
\rightarrow\left[\begin{array}{rrr|r}
1 & 1 & -1 & a \\
0 & -5 & 7 & b-2 a \\
0 & 0 & 0 & (c-7 a)-(b-2 a)
\end{array}\right]=\left[\begin{array}{rrr|c}
1 & 1 & -1 & a \\
0 & -5 & 7 & b-2 a \\
0 & 0 & 0 & -5 a-b+c
\end{array}\right]
\end{gathered}
$$

There is no solution unless $-5 a-b+c=0$. On the other hand, if $-5 a-b+c=0$, row echelon form is

$$
\rightarrow\left[\begin{array}{ccc|c}
1 & 1 & -1 & a \\
0 & 1 & -\frac{7}{5} & -\frac{b-2 a}{5} \\
0 & 0 & 0 & 0
\end{array}\right],
$$

z is a free variable, and there are infinitely many solutions.
2. $c_{1} \mathbf{v}_{1}+c_{2} \mathfrak{v}_{2}+c_{3} \mathfrak{v}_{3}+c_{4} \mathbf{v}_{4}=0$ is $A \mathbf{c}=0$ with $A=\left[\begin{array}{rrrr}1 & -3 & 4 & 1 \\ 2 & 0 & 2 & 1 \\ 3 & 1 & 2 & 13\end{array}\right]$ and $\mathbf{c}=\left[\begin{array}{l}c_{1} \\ c_{2} \\ c_{3} \\ c_{4}\end{array}\right]$.

Gaussian elimination proceeds

$$
A \rightarrow\left[\begin{array}{rrrr}
1 & -3 & 4 & 1 \\
0 & 6 & -6 & -1 \\
0 & 10 & -10 & 10
\end{array}\right] \rightarrow\left[\begin{array}{rrrr}
1 & -3 & 4 & 1 \\
0 & 1 & -1 & 1 \\
0 & 0 & 0 & -7
\end{array}\right] \rightarrow\left[\begin{array}{rrrr}
1 & -3 & 4 & 1 \\
0 & 1 & -1 & 1 \\
0 & 0 & 0 & 1
\end{array}\right] .
$$

Since c_{3} is a free variable, this homogeneous system has nontrivial solutions. For example, $-\mathrm{v}_{1}+\mathrm{v}_{2}+\mathrm{v}_{3}+0 \mathrm{v}_{4}=0$. The vectors are linearly dependent. One nontrivial linear dependence equation is $\mathrm{v}_{1}-\mathrm{v}_{2}-\mathrm{v}_{3}=0$.
3. $E A$ was formed from the operation $R 2 \rightarrow R 2-4 R 1$, so $E=\left[\begin{array}{rrr}1 & 0 & 0 \\ -4 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$.
4. A is elementary, namely, that elementary matrix which effects the operation $R 3 \rightarrow$ $R 3+5 R 2$. Its inverse is the elementary matrix which "undoes" A; it's the one that effects the operation $R 3 \rightarrow R 3-5 R 2: A^{-1}=\left[\begin{array}{rrr}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -5 & 1\end{array}\right]$.
5. We bring A to upper triangular form using only the third elementary row operation.

$$
A \rightarrow\left[\begin{array}{rrr}
-2 & 4 & 6 \\
0 & 4 & -5 \\
0 & 8 & 7
\end{array}\right] \rightarrow\left[\begin{array}{rrr}
-2 & 4 & 6 \\
0 & 4 & -5 \\
0 & 0 & 17
\end{array}\right]=U^{\prime} .
$$

Keeping track of multipliers gives $L=\left[\begin{array}{rrr}1 & 0 & 0 \\ -\frac{1}{2} & 1 & 0 \\ -2 & 2 & 1\end{array}\right]$ and $A=L U^{\prime}$ is an $L U$ factorization. Factoring U^{\prime} gives $D=\left[\begin{array}{rrr}-2 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 17\end{array}\right]$ and $U=\left[\begin{array}{rrr}1 & -2 & -3 \\ 0 & 1 & -\frac{5}{4} \\ 0 & 0 & 1\end{array}\right]$.
6. (a) The equation $A \mathrm{x}=\mathrm{b}$ is $(L U) \mathrm{x}=\mathrm{b}$, that is, $L(U \mathrm{x})=\mathrm{b}$. So let $\mathrm{y}=U \mathrm{x}$ and solve $L \mathrm{y}=\mathrm{b}$ for $\mathrm{y}=\left[\begin{array}{l}y_{1} \\ y_{2} \\ y_{3}\end{array}\right]$. Then solve $U \mathrm{x}=\mathrm{y}$ for $\mathrm{x}=\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]$. We solve $L \mathrm{y}=\mathrm{b}$ by forward substitution: $y_{1}=1 ; 5 y_{1}+y_{2}=2$, so $y_{2}=-3 ;-2 y_{1}+3 y_{2}+y_{3}=3$, so $y_{3}=14$: we get $\mathrm{y}=\left[\begin{array}{r}1 \\ -3 \\ 14\end{array}\right]$. Now we solve $U \mathrm{x}=\mathrm{c}$ by back substitution: $7 x_{3}=14$, so $x_{3}=2$; $-5 x_{2}+x_{3}=-3$, so $x_{2}=1 ; x_{1}+6 x_{2}+7 x_{3}=1$, so $x_{1}=-19$: we get $\mathrm{x}=\left[\begin{array}{r}-19 \\ 1 \\ 2\end{array}\right]$. (Did you check your answer?)
(b) Fact 2.1.33 is one of the most fundamental, useful and important properties in linear algebra. Since $A \mathrm{x}=\left[\begin{array}{rrr}1 & 6 & 7 \\ 5 & 25 & 36 \\ -2 & -27 & -4\end{array}\right]\left[\begin{array}{r}-19 \\ 1 \\ 2\end{array}\right]=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]=\mathrm{b}$ (you did check your answer?), we have $b=-19\left[\begin{array}{r}1 \\ 5 \\ -2\end{array}\right]+1\left[\begin{array}{r}6 \\ 25 \\ -27\end{array}\right]+2\left[\begin{array}{r}7 \\ 36 \\ -4\end{array}\right]$.

