1. Since $A(I+A)=(I+A) A=I, A$ is invertible with inverse $I+A$.
2. Note that $A=(A B) B^{-1}$ is the product of invertible matrices, so it too is invertible, as shown in Problem 2.2.11.
3.

(a) $\left[\begin{array}{rrr|r}2 & -1 & 2 & -4 \\ 3 & 2 & 0 & 1 \\ 1 & 3 & -6 & 5\end{array}\right] \rightarrow\left[\begin{array}{rrr|r}1 & 3 & -6 & 5 \\ 0 & -7 & 14 & -14 \\ 0 & -7 & 18 & -14\end{array}\right] \rightarrow\left[\begin{array}{rrr|r}1 & 3 & -6 & 5 \\ 0 & 1 & -2 & 2 \\ 0 & 0 & 4 & 0\end{array}\right]$.

So $z=0 ; y-2 z=2$, so $y=2 ; x+3 y-6 z=5$, so $x=-1$. The solution is $\left[\begin{array}{r}-1 \\ 2 \\ 0\end{array}\right]$.
(b) $[A \mid \mathrm{b}]=\left[\begin{array}{rrr|r}1 & 1 & 7 & 2 \\ 2 & -4 & 14 & -1 \\ 5 & 11 & -7 & 8 \\ 2 & 5 & -4 & -3\end{array}\right] \rightarrow\left[\begin{array}{rrr|r}1 & 1 & 7 & 2 \\ 0 & -6 & 0 & -3 \\ 0 & 6 & -42 & -2 \\ 0 & 3 & -18 & -7\end{array}\right] \rightarrow\left[\begin{array}{rrr|r}1 & 1 & 7 & 2 \\ 0 & 1 & 0 & \frac{1}{2} \\ 0 & 6 & -42 & -2 \\ 0 & 3 & -18 & -7\end{array}\right]$
$\rightarrow\left[\begin{array}{rrr|r}1 & 1 & 7 & 2 \\ 0 & 1 & 0 & \frac{1}{2} \\ 0 & 0 & -42 & -5 \\ 0 & 0 & -18 & -\frac{17}{2}\end{array}\right]$.
The last two rows imply, respectively, that $z=\frac{5}{42}$ and that $z=\frac{17}{36}$. This cannot be. The system has no solution.
(c) $[A \mid \mathrm{b}]=\left[\begin{array}{rrrr|r}2 & 2 & 2 & -8 & 2 \\ 4 & 6 & 6 & 0 & 4 \\ 6 & 6 & 10 & -4 & 2\end{array}\right] \rightarrow\left[\begin{array}{rrrr|r}2 & 2 & 2 & -8 & 2 \\ 0 & 2 & 4 & 16 & 0 \\ 0 & 0 & 4 & 20 & -4\end{array}\right]$. This is upper triangular form. We complete the solutions by back substitution.
Variable $x_{4}=t$ is free and $4 x_{3}+20 x_{4}=-4$, so $x_{3}=-1-5 x_{4}=-1-5 t$. Then $x_{2}=-x_{3}-8 x_{4}=1-3 t$ and $x_{1}=1-x_{2}-x_{3}+4 x_{4}=1+12 t$. The solution is $\mathrm{x}=\left[\begin{array}{c}1+12 t \\ 1-3 t \\ -1-5 t \\ t\end{array}\right]=\left[\begin{array}{r}1 \\ 1 \\ -1 \\ 0\end{array}\right]+t\left[\begin{array}{c}12 \\ -3 \\ -5 \\ 1\end{array}\right]$.
(d) $[A \mid \mathrm{b}]=\left[\begin{array}{ccc}1 & -1 & 2 \mid 4\end{array}\right]$. This is row echelon form. The free variables are $y=t$ and $z=s$, so $x=4+y-2 z=4+t-2 s$. In vector form the solution is

$$
\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
4+t-2 s \\
t \\
s
\end{array}\right]=\left[\begin{array}{l}
4 \\
0 \\
0
\end{array}\right]+t\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]+s\left[\begin{array}{r}
-2 \\
0 \\
1
\end{array}\right] .
$$

(e) This system is homogeneous. The right hand column of 0 s is not affected by the elementary row operations, so we omit it from the steps of Gaussian elimination,
remembering, however, that it is there!

$$
\begin{aligned}
A=\left[\begin{array}{rrrr}
2 & -7 & 1 & 1 \\
1 & -2 & 1 & 0 \\
3 & 6 & 7 & -4
\end{array}\right] \rightarrow & \rightarrow\left[\begin{array}{rrrr}
1 & -2 & 1 & 0 \\
2 & -7 & 1 & 1 \\
3 & 6 & 7 & -4
\end{array}\right] \\
& \rightarrow\left[\begin{array}{rrrr}
1 & -2 & 1 & 0 \\
0 & -3 & -1 & 1 \\
0 & 12 & 4 & -4
\end{array}\right] \rightarrow\left[\begin{array}{rrrr}
1 & -2 & 1 & 0 \\
0 & 1 & \frac{1}{3} & -\frac{1}{3} \\
0 & 0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

The variables $x_{3}=s$ and $x_{4}=t$ are free. Back substitution gives

$$
x_{2}+\frac{1}{3} x_{3}-\frac{1}{3} x_{4}=0, \text { so that } x_{2}=-\frac{1}{3} x_{3}+\frac{1}{3} x_{4}=-\frac{1}{3} s+\frac{1}{3} t,
$$

and

$$
x_{1}-2 x_{2}+x_{3}=0, \text { so } x_{1}=2 x_{2}-x_{3}=2\left(-\frac{1}{3} s+\frac{1}{3} t\right)-s=-\frac{5}{3} s+\frac{2}{3} t .
$$

Our solution is $\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4}\end{array}\right]=\left[\begin{array}{c}-\frac{5}{3} s+\frac{2}{3} t \\ -\frac{1}{3} s+\frac{1}{3} t \\ s \\ t\end{array}\right]=s\left[\begin{array}{c}-\frac{5}{3} \\ -\frac{1}{3} \\ 1 \\ 0\end{array}\right]+t\left[\begin{array}{c}\frac{2}{3} \\ \frac{1}{3} \\ \frac{1}{3} \\ 0 \\ 1\end{array}\right]$, which is the set of linear combinations of $\left[\begin{array}{r}-\frac{5}{3} \\ -\frac{1}{3} \\ 1 \\ 0\end{array}\right]$ and $\left[\begin{array}{c}\frac{2}{3} \\ \frac{1}{3} \\ 0 \\ 1\end{array}\right]$, a set which is also the set of linear combinations of $\left[\begin{array}{r}-5 \\ -1 \\ 3 \\ 0\end{array}\right]$ and $\left[\begin{array}{l}2 \\ 1 \\ 0 \\ 3\end{array}\right]$. So we could also write the solution as $\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4}\end{array}\right]=s\left[\begin{array}{r}-5 \\ -1 \\ 3 \\ 0\end{array}\right]+t\left[\begin{array}{l}2 \\ 1 \\ 0 \\ 3\end{array}\right]$.
(f) $[A \mid \mathbf{b}]=\left[\begin{array}{rrrr|r}2 & -3 & 4 & -1 & 5 \\ -1 & 1 & 0 & 1 & -1 \\ 0 & 2 & -1 & -3 & 1 \\ 3 & 0 & 1 & 4 & 7\end{array}\right] \rightarrow\left[\begin{array}{rrrr|r}1 & -1 & 0 & -1 & 1 \\ 2 & -3 & 4 & -1 & 5 \\ 0 & 2 & -1 & -3 & 1 \\ 3 & 0 & 1 & 4 & 7\end{array}\right]$

$$
\begin{aligned}
& \rightarrow\left[\begin{array}{rrrr|r}
1 & -1 & 0 & -1 & 1 \\
0 & -1 & 4 & 1 & 3 \\
0 & 2 & -1 & -3 & 1 \\
0 & 3 & 1 & 7 & 4
\end{array}\right] \rightarrow\left[\begin{array}{rrrr|r}
1 & -1 & 0 & -1 & 1 \\
0 & 1 & -4 & -1 & -3 \\
0 & 2 & -1 & -3 & 1 \\
0 & 3 & 1 & 7 & 4
\end{array}\right] \\
& \rightarrow\left[\begin{array}{rrrr|r}
1 & -1 & 0 & -1 & 1 \\
0 & 1 & -4 & -1 & -3 \\
0 & 0 & 7 & -1 & 7 \\
0 & 0 & 13 & 10 & 13
\end{array}\right] \rightarrow\left[\begin{array}{rrrr|r}
1 & -1 & 0 & -1 & 1 \\
0 & 1 & -4 & -1 & -3 \\
0 & 0 & 14 & -2 & 14 \\
0 & 0 & 13 & 10 & 13
\end{array}\right] \\
& \rightarrow\left[\begin{array}{rrrr|r}
1 & -1 & 0 & -1 & 1 \\
0 & 1 & -4 & -1 & -3 \\
0 & 0 & 1 & -12 & 1 \\
0 & 0 & 13 & 10 & 13
\end{array}\right] \rightarrow\left[\begin{array}{rrrr|r}
1 & -1 & 0 & -1 & 1 \\
0 & 1 & -4 & -1 & -3 \\
0 & 0 & 1 & -12 & 1 \\
0 & 0 & 0 & 166 & 0
\end{array}\right]
\end{aligned}
$$

$$
\rightarrow\left[\begin{array}{rrrr|r}
1 & -1 & 0 & -1 & 1 \\
0 & 1 & -4 & -1 & -3 \\
0 & 0 & 1 & -12 & 1 \\
0 & 0 & 0 & 1 & 0
\end{array}\right]
$$

Thus $x_{4}=0, x_{3}-12 x_{4}=1$, so $x_{3}=1+12 x_{4}=1$,

$$
x_{2}-4 x_{3}-x_{4}=-3, \text { so } x_{2}=-3+4 x_{3}+x_{4}=-3+4=1
$$

and $x_{1}-x_{2}-x_{4}=1$, so $x_{1}=1+x_{2}+x_{4}=1+1=2$. The solution is $\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4}\end{array}\right]=\left[\begin{array}{l}2 \\ 1 \\ 1 \\ 0\end{array}\right]$.
4. The question asks if there are scalars a and b such that $\left[\begin{array}{r}2 \\ -11 \\ -3\end{array}\right]=a\left[\begin{array}{c}0 \\ -1 \\ 5\end{array}\right]+b\left[\begin{array}{c}-1 \\ 4 \\ 9\end{array}\right]$. This is $\left[\begin{array}{rr}0 & -1 \\ -1 & 4 \\ 5 & 9\end{array}\right]\left[\begin{array}{l}a \\ b\end{array}\right]=\left[\begin{array}{r}2 \\ -11 \\ -3\end{array}\right]$. Gaussian elimination gives

$$
\left[\begin{array}{rr|r}
0 & -1 & 2 \\
-1 & 4 & -11 \\
5 & 9 & -3
\end{array}\right] \rightarrow\left[\begin{array}{rr|r}
1 & -4 & 11 \\
0 & -1 & 2 \\
0 & 29 & -58
\end{array}\right] \rightarrow\left[\begin{array}{rr|r}
1 & -4 & 11 \\
0 & 1 & -2 \\
0 & 0 & 0
\end{array}\right]
$$

There is a unique solution: $b=-2, a=3$. The given vector is indeed a linear combination of the other two.

$$
\left[\begin{array}{r}
2 \\
-11 \\
-3
\end{array}\right]=3\left[\begin{array}{r}
0 \\
-1 \\
5
\end{array}\right]-2\left[\begin{array}{r}
-1 \\
4 \\
9
\end{array}\right] .
$$

