1. (a) "No". For example, if $A=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$ and $B=\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]$, then $A B=0$.
(b) Since $A B=\left[\begin{array}{ll}a & 2 a-b \\ c & 2 c-d\end{array}\right]$, if $A B=0$, then $a=2 a-b=c=2 c-d=0$, so $a=b=c=d=0$ and $A=0$. This result does not contradict part (a) which says that $A B=0$ need not always force $A=0$ or $B=0$.
(c) If $X B=Y B$, then $(X-Y) B=0$ so, by part (b), we conclude that $X-Y=0$. So $X=Y$.
2. Substituting $x=\frac{\pi}{3}, y=2$, gives $a \frac{\sqrt{3}}{2}+\frac{1}{2} b=2$. Substituting $x=-\frac{\pi}{4}, y=1$ gives $-\frac{\sqrt{2}}{2} a+\frac{\sqrt{2}}{2} b=1$. Thus $\begin{aligned} \sqrt{3} a+b & =4 \\ -\sqrt{2} a+\sqrt{2} b & =2 .\end{aligned}$
In matrix form, this is $\left[\begin{array}{cc}\sqrt{3} & 1 \\ -\sqrt{2} & \sqrt{2}\end{array}\right]\left[\begin{array}{l}a \\ b\end{array}\right]=\left[\begin{array}{l}4 \\ 2\end{array}\right]$.
3. $A+B=\left[\begin{array}{ll}1 & 1 \\ 8 & 2\end{array}\right]$, so $(A+B)^{2}=\left[\begin{array}{cc}9 & 3 \\ 24 & 12\end{array}\right]$.

$$
\begin{aligned}
A^{2}= & {\left[\begin{array}{cc}
7 & 10 \\
15 & 22
\end{array}\right], B^{2}=\left[\begin{array}{rr}
-5 & 2 \\
-10 & -1
\end{array}\right], A B=\left[\begin{array}{cc}
10 & -5 \\
20 & -11
\end{array}\right] \text { and so } } \\
& A^{2}+2 A B+B^{2}=\left[\begin{array}{cc}
7 & 10 \\
15 & 22
\end{array}\right]+\left[\begin{array}{ll}
20 & -10 \\
40 & -22
\end{array}\right]+\left[\begin{array}{cc}
-5 & 2 \\
-10 & -1
\end{array}\right]=\left[\begin{array}{cc}
22 & 2 \\
45 & -1
\end{array}\right] .
\end{aligned}
$$

No, $(A+B)^{2} \neq A^{2}+2 A B+B^{2}$. The correct expansion is $(A+B)^{2}=(A+B)(A+B)=$ $A^{2}+A B+B A+B^{2}$.
4. Neither A nor B has an inverse; neither is square. This is an example where $A B=I$ but $B A \neq I$.
5. If $X^{-1} A Y^{-1}=B$, then $A=X B Y$ (multiplying by X on the left and by Y on the right). So

$$
A=\left[\begin{array}{ll}
1 & 2 \\
3 & 0
\end{array}\right]\left[\begin{array}{rr}
-3 & 4 \\
0 & 2
\end{array}\right]\left[\begin{array}{rr}
5 & 1 \\
-1 & 1
\end{array}\right]=\left[\begin{array}{rr}
-3 & 8 \\
-9 & 12
\end{array}\right]\left[\begin{array}{rr}
5 & 1 \\
-1 & 1
\end{array}\right]=\left[\begin{array}{ll}
-23 & 5 \\
-57 & 3
\end{array}\right] .
$$

6. Since x is $n \times 1, \mathrm{x}^{T}$ is $1 \times n$, so $\mathrm{x}^{T} A \mathrm{x}$ is the product of a $1 \times n$, an $n \times n$ and an $n \times 1$ matrix. This is 1×1.
7. $(A B)^{T}=B^{T} A^{T}$, so $\left((A B)^{T}\right)^{-1}=\left(B^{T} A^{T}\right)^{-1}=\left(A^{T}\right)^{-1}\left(B^{T}\right)^{-1}$.
