Assignment 5	MATH 2050	Fall 2004
	SOLUTIONS	

- 1. Suppose $a\mathbf{e} + b\mathbf{f} = 0$. Taking the dot product with \mathbf{e} and using $\mathbf{f} \cdot \mathbf{e} = 0$ gives $a\mathbf{e} \cdot \mathbf{e} = 0$. Since $\mathbf{e} \neq \mathbf{0}$, it follows that $\mathbf{e} \cdot \mathbf{e} \neq 0$, so a = 0. Similarly, taking the dot product with \mathbf{f} gives b = 0.
- 2. We are given that w = au + bv for some scalars a and b. So au + bv + (-1)w = 0. Since not all coefficients on the left are 0 (the coefficient of w is -1), the vectors are linearly dependent.
- $3. \left[\begin{array}{rrr} 1 & 2 & 3 \\ 2 & 2 & 3 \end{array} \right]$
- 4. Since $A = \begin{bmatrix} 1 & 0 \\ 2 & 4 \\ -3 & 5 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 2 & -3 \\ 0 & 4 & 5 \end{bmatrix}$, $a_{11} = 1$, a_{13} is not defined, $a_{21} = 2$, b_{32} is not defined, $b_{12} = 2$ and $b_{22} = 4$.
- 5. $\begin{bmatrix} 1 & -1 & 1 & -2 \\ 3 & 5 & -2 & 2 \\ 0 & 3 & 4 & -7 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ -1 \end{bmatrix}$

6.
$$AB = \begin{bmatrix} -2 & 6 \\ -1 & 6 \\ 3 & 13 \end{bmatrix}$$
; *BA* is not defined.

7. Let
$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
. Then $AB = \begin{bmatrix} b & -a \\ d & -c \end{bmatrix}$ and $BA = \begin{bmatrix} -c & -d \\ a & b \end{bmatrix}$. Now $AB = BA$ implies $b = -c$ and $a = d$, so $A = \begin{bmatrix} a & b \\ -b & a \end{bmatrix}$.