1. Suppose $a \mathrm{e}+b \mathrm{f}=0$. Taking the dot product with e and using $\mathrm{f} \cdot \mathrm{e}=0$ gives $a \mathrm{e} \cdot \mathrm{e}=0$. Since $\mathrm{e} \neq 0$, it follows that $\mathrm{e} \cdot \mathrm{e} \neq 0$, so $a=0$. Similarly, taking the dot product with f gives $b=0$.
2. We are given that $\mathbf{w}=a \mathbf{u}+b \mathbf{v}$ for some scalars a and b. So $a \mathbf{u}+b \mathbf{v}+(-1) \mathbf{w}=0$. Since not all coefficients on the left are 0 (the coefficient of w is -1), the vectors are linearly dependent.
3. $\left[\begin{array}{lll}1 & 2 & 3 \\ 2 & 2 & 3\end{array}\right]$
4. Since $A=\left[\begin{array}{rr}1 & 0 \\ 2 & 4 \\ -3 & 5\end{array}\right]$ and $B=\left[\begin{array}{rrr}1 & 2 & -3 \\ 0 & 4 & 5\end{array}\right], a_{11}=1, a_{13}$ is not defined, $a_{21}=2, b_{32}$ is not defined, $b_{12}=2$ and $b_{22}=4$.
5. $\left[\begin{array}{rrrr}1 & -1 & 1 & -2 \\ 3 & 5 & -2 & 2 \\ 0 & 3 & 4 & -7\end{array}\right]\left[\begin{array}{l}x \\ y \\ z \\ w\end{array}\right]=\left[\begin{array}{r}0 \\ 1 \\ -1\end{array}\right]$
6. $A B=\left[\begin{array}{rr}-2 & 6 \\ -1 & 6 \\ 3 & 13\end{array}\right] ; B A$ is not defined.
7. Let $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$. Then $A B=\left[\begin{array}{ll}b & -a \\ d & -c\end{array}\right]$ and $B A=\left[\begin{array}{rr}-c & -d \\ a & b\end{array}\right]$. Now $A B=B A$ implies $b=-c$ and $a=d$, so $A=\left[\begin{array}{rr}a & b \\ -b & a\end{array}\right]$.
