Assignment 4	MATH 2050	Eall 2004
Assignment 4	SOLUTIONS	Fall 2004

- 1. (a) We are given that x is a linear combination of u and v. Thus there are scalars a and b with x = au + bv. A scalar multiple of x is a vector of the form kx. This is (ak)u + (bk)v which is also a linear combination of u and v, hence in the plane that they span.
 - (b) Since x is in π , $ax_1 + bx_2 + cx_3 = 0$. A scalar multiple of x is a vector of the form $kx = \begin{bmatrix} kx_1 \\ kx_2 \\ kx_3 \end{bmatrix}$. Since $a(kx_1) + b(kx_2) + c(kx_3) = k(ax_1 + bx_2 + cx_3) = 0$, kx is in π too.
- 2. (a) Let P(1, 1, 1) be the given point. To find the distance from P to π , we find a point in the plane, say Q(10, 0, 0), and project $\overrightarrow{PQ} = \begin{bmatrix} 9\\-1\\-1 \end{bmatrix}$ onto the normal $n = \begin{bmatrix} -1\\-3\\4 \end{bmatrix}$. The desired distance is the length of this projection. We have $\operatorname{proj}_n \overrightarrow{PQ} = \frac{8}{26} \begin{bmatrix} -1\\-3\\4 \end{bmatrix} = \frac{4}{13} \begin{bmatrix} -1\\-3\\4 \end{bmatrix}$. The desired distance is $\|\frac{4}{13} \begin{bmatrix} -1\\-3\\4 \end{bmatrix} \| = \frac{4}{13}\sqrt{26}$.
 - (b) Let A(x, y, z) be the point of π closest to P. Then \overrightarrow{PA} is the projection of PQ on n; that is, $\overrightarrow{PA} = \frac{4}{13} \begin{bmatrix} 1\\ -3\\ 4 \end{bmatrix}$. We get $x = \frac{17}{13}$, $y = \frac{1}{13}$, $z = \frac{29}{13}$. The closest point is $A(\frac{17}{13}, \frac{1}{13}, \frac{29}{13})$.
- 3. (a) We find two nonparallel vectors u and v in the plane, find the projection p of u on v and take v and u p as our vectors. Let $u = \begin{bmatrix} 1 \\ 0 \\ -2 \end{bmatrix}$ and $v = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$. Then

$$\mathsf{p} = \operatorname{proj}_{\mathsf{v}} \mathsf{u} = \frac{\mathsf{u} \cdot \mathsf{v}}{\mathsf{v} \cdot \mathsf{v}} \mathsf{v} = \frac{-2}{2} \begin{bmatrix} 0\\1\\1 \end{bmatrix} = \begin{bmatrix} 0\\-1\\-1 \end{bmatrix}$$

and $\mathbf{u} - \mathbf{p} = \begin{bmatrix} 1\\1\\-1 \end{bmatrix}$, so $\begin{bmatrix} 0\\1\\1 \end{bmatrix}$ and $\begin{bmatrix} 1\\1\\-1 \end{bmatrix}$ are suitable orthogonal vectors.

[There are, of course, many correct answers to this question. Any two orthogonal vectors whose components satisfy the equation of the plane will do.]

(b) In part (a), we learned that $\mathbf{e} = \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix}$ and $\mathbf{f} = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$ are orthogonal vectors spanning π , so we just write down the answer:

$$\operatorname{proj}_{\pi} \mathsf{w} = \frac{\mathsf{w} \cdot \mathsf{e}}{\mathsf{e} \cdot \mathsf{e}} \mathsf{e} + \frac{\mathsf{w} \cdot \mathsf{f}}{\mathsf{f} \cdot \mathsf{f}} \mathsf{f} = \frac{1}{3} \begin{bmatrix} 1\\1\\-1 \end{bmatrix} + \frac{2}{2} \begin{bmatrix} 0\\1\\1 \end{bmatrix} = \begin{bmatrix} 1/3\\4/3\\2/3 \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 1\\4\\2 \end{bmatrix}.$$

4. (a) The lines have directions $d_1 = \begin{bmatrix} 2\\1\\-3 \end{bmatrix}$ and $d_2 = \begin{bmatrix} 0\\1\\-1 \end{bmatrix}$. Neither vector is a scalar multiple of the other, so the lines are not parallel. Suppose they intersect at (x, y, z). Then there would exist *t* and *s* such that

$$x = -1 + 2t = 4$$

$$y = t = 1 + s$$

$$z = 1 - 3t = -2 - s.$$

Substituting t = 1 + s in the first equation gives $s = \frac{3}{2}$, so $t = \frac{5}{2}$. Since these values do not satisfy the third equation, no such *s* and *t* exist, so the lines do not intersect.

(b) Each line is perpendicular to a normal to the plane, so the cross product of the two direction vectors is a normal:

$$\mathbf{n} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{j} \\ 2 & 1 & -3 \\ 0 & 1 & -1 \end{vmatrix} = 2\mathbf{i} + 2\mathbf{j} + 2\mathbf{k} = 2\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}.$$

The plane has equation x + y + z = d, and since it contains the point (-1, 0, 1), d = 0. The equation is x + y + z = 0.

5. The vector v is indeed a linear combination of v_1, \ldots, v_5 , since $v = 0v_1 + 0v_2 + (-1)v_3 + 0v_4 + 0v_5$.