1. (a) We are given that x is a linear combination of u and v . Thus there are scalars a and b with $\mathrm{x}=a \mathrm{u}+b \mathrm{v}$. A scalar multiple of x is a vector of the form $k \mathrm{x}$. This is $(a k) u+(b k) v$ which is also a linear combination of u and v, hence in the plane that they span.
(b) Since x is in $\pi, a x_{1}+b x_{2}+c x_{3}=0$. A scalar multiple of x is a vector of the form $k \mathrm{x}=\left[\begin{array}{l}k x_{1} \\ k x_{2} \\ k x_{3}\end{array}\right]$. Since $a\left(k x_{1}\right)+b\left(k x_{2}\right)+c\left(k x_{3}\right)=k\left(a x_{1}+b x_{2}+c x_{3}\right)=0, k \mathrm{x}$ is in π too.
2. (a) Let $P(1,1,1)$ be the given point. To find the distance from P to π, we find a point in the plane, say $Q(10,0,0)$, and project $\overrightarrow{P Q}=\left[\begin{array}{r}9 \\ -1 \\ -1\end{array}\right]$ onto the normal $n=\left[\begin{array}{r}1 \\ -3 \\ 4\end{array}\right]$. The desired distance is the length of this projection. We have $\operatorname{proj}_{n} \overrightarrow{P Q}=\frac{8}{26}\left[\begin{array}{r}1 \\ -3 \\ 4\end{array}\right]=$ $\frac{4}{13}\left[\begin{array}{r}1 \\ -3 \\ 4\end{array}\right]$. The desired distance is $\left\|\frac{4}{13}\left[\begin{array}{r}1 \\ -3 \\ 4\end{array}\right]\right\|=\frac{4}{13} \sqrt{26}$.
(b) Let $A(x, y, z)$ be the point of π closest to P. Then $\overrightarrow{P A}$ is the projection of $P Q$ on n ; that is, $\overrightarrow{P A}=\frac{4}{13}\left[\begin{array}{r}1 \\ 3 \\ 4\end{array}\right]$. We get $x=\frac{17}{13}, y=\frac{1}{13}, z=\frac{29}{13}$. The closest point is $A\left(\frac{17}{13}, \frac{1}{13}, \frac{29}{13}\right)$.
3. (a) We find two nonparallel vectors u and v in the plane, find the projection p of u on v and take v and $u-p$ as our vectors. Let $u=\left[\begin{array}{r}1 \\ 0 \\ -2\end{array}\right]$ and $v=\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right]$. Then

$$
\mathrm{p}=\operatorname{proj}_{\mathrm{v}} \mathrm{u}=\frac{\mathrm{u} \cdot \mathrm{v}}{\mathrm{v} \cdot \mathrm{v}} \mathrm{v}=\frac{-2}{2}\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right]=\left[\begin{array}{r}
0 \\
-1 \\
-1
\end{array}\right]
$$

and $\mathbf{u}-\mathrm{p}=\left[\begin{array}{r}1 \\ 1 \\ -1\end{array}\right]$, so $\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right]$ and $\left[\begin{array}{r}1 \\ 1 \\ -1\end{array}\right]$ are suitable orthogonal vectors.
[There are, of course, many correct answers to this question. Any two orthogonal vectors whose components satisfy the equation of the plane will do.]
(b) In part (a), we learned that $\mathrm{e}=\left[\begin{array}{r}1 \\ 1 \\ -1\end{array}\right]$ and $\mathrm{f}=\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right]$ are orthogonal vectors spanning π, so we just write down the answer:

$$
\operatorname{proj}_{\pi} \mathrm{w}=\frac{\mathrm{w} \cdot \mathrm{e}}{\mathrm{e} \cdot \mathrm{e}} \mathrm{e}+\frac{\mathrm{w} \cdot \mathrm{f}}{\mathrm{f} \cdot \mathrm{f}} \mathrm{f}=\frac{1}{3}\left[\begin{array}{r}
1 \\
1 \\
-1
\end{array}\right]+\frac{2}{2}\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
1 / 3 \\
4 / 3 \\
2 / 3
\end{array}\right]=\frac{1}{3}\left[\begin{array}{l}
1 \\
4 \\
2
\end{array}\right] .
$$

4. (a) The lines have directions $d_{1}=\left[\begin{array}{r}2 \\ 1 \\ -3\end{array}\right]$ and $d_{2}=\left[\begin{array}{r}0 \\ 1 \\ -1\end{array}\right]$. Neither vector is a scalar multiple of the other, so the lines are not parallel. Suppose they intersect at (x, y, z). Then there would exist t and s such that

$$
\begin{array}{ll}
x=-1+2 t & =4 \\
y=t & =1+s \\
z=1-3 t & =-2-s .
\end{array}
$$

Substituting $t=1+s$ in the first equation gives $s=\frac{3}{2}$, so $t=\frac{5}{2}$. Since these values do not satisfy the third equation, no such s and t exist, so the lines do not intersect.
(b) Each line is perpendicular to a normal to the plane, so the cross product of the two direction vectors is a normal:

$$
\mathrm{n}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{j} \\
2 & 1 & -3 \\
0 & 1 & -1
\end{array}\right|=2 \mathbf{i}+2 \mathbf{j}+2 \mathbf{k}=2\left[\begin{array}{c}
1 \\
1 \\
1
\end{array}\right] .
$$

The plane has equation $x+y+z=d$, and since it contains the point $(-1,0,1)$, $d=0$. The equation is $x+y+z=0$.
5. The vector v is indeed a linear combination of $\mathrm{v}_{1}, \ldots, \mathrm{v}_{5}$, since $\mathrm{v}=0 \mathrm{v}_{1}+0 \mathrm{v}_{2}+(-1) \mathrm{v}_{3}+$ $0 \mathrm{v}_{4}+0 \mathrm{v}_{5}$.

